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Agenda
• Materials
• Finite Elements Analysis
• Tissues of interest
• Fluid Dynamics
• Musculoskeletal modelling

◦ Muscle models
◦ Forward/inverse kinematics
◦ Forward/inverse dynamics
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Materials
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Strength of materials
Definition
The study of describing the amount of load that can be exerted
on a material until it deforms or fails.

Galileo Galilei was one of the first to develop a theory for the
strength of materials (Two new sciences, 1638)

What concepts you remember from ’Rezistența Materialelor’?
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Strength of materials
General overview

Basic hypothesis: every object has resistance to deformation
related to its composing materials and shape.

Resistance relates to the amount of load we exert on the object.

Deformation can be either temporary or permanent.
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Strength of materials
Stress

Stress is a standardized unit for quantifying the load applied on a
specific area. It is a similar notion as pressure, as it is calculated
by the division of Force under the Area.

σ = F
A

Why use stress instead of force?
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Strength of materials
Stress

Stress can be either normal or shear stress.

Normal stress acts
perpendicular to a surface, while shear stress acts parallel to it.

What is normal or parallel, depends what is the surface of
reference

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 7/86
7/86



Strength of materials
Stress

Stress can be either normal or shear stress. Normal stress acts
perpendicular to a surface

, while shear stress acts parallel to it.

What is normal or parallel, depends what is the surface of
reference

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 7/86
7/86



Strength of materials
Stress

Stress can be either normal or shear stress. Normal stress acts
perpendicular to a surface, while shear stress acts parallel to it.

What is normal or parallel, depends what is the surface of
reference

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 7/86
7/86



Strength of materials
Stress

Stress can be either normal or shear stress. Normal stress acts
perpendicular to a surface, while shear stress acts parallel to it.

What is normal or parallel, depends what is the surface of
reference

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 7/86
7/86



Strength of materials
Tensile tests

How do we quantify the properties of a material?
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Strength of materials
Isotropic vs Anisotropic

Isotropic material
A material that has the same properties regardless of the axis of
measurement

Anisotropic material
A material that its properties differ along different axes.

What can be the source of anisotropy?
What kind do you think biological materials are?
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Strength of materials
Timoshenko-Ehrenfest beam theory

d2

dx2

(
EI d2w

dx2

)
= q(x)

Why is Euler-Bernouli wrong?
d2

dx2

(
EI dϕ

dx

)
= q(x)

dw
dx

= ϕ − 1
κAG

d
dx

(
EI dϕ

dx

)
.
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Strength of materials
Back to biomechanics

d2

dx2

(
EI dϕ

dx

)
= q(x)

dw
dx

= ϕ − 1
κAG

d
dx

(
EI dϕ

dx

)
.

Can we apply this to biological
materials?

Why not?
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Finite Elements Analysis
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Finite Element Analysis
Description
A computational scheme to solve field problems. The field can be
stress, heat, pressure, electric, magnetic, etc, etc. The principle
involves dividing the body in finite pieces that can provide
analytical solutions.

Key word is discretization
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Finite Element Analysis
Different levels of discretization

• Geometry
• Materials
• Time
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Finite Element Analysis
Geometry discretization

To discretize geometry, we have several elements available (Think
of them as lego blocks):

• 1D (Rods, beams, Trusses,
Frames)

• 2D (Triangular, Quadrilateral,
Plates, Shells)

• 3D (Tetrahedral, Hexahedral)

What does it mean 1D, 2D, 3D?
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Finite Element Analysis
1D element equations

A model of a spring.

We need to write a force displacement equation for each ’node’

F1 = ku1 − ku2
F2 = −ku1 + ku2

[
k −k

−k k

]{
u1
u2

}
=
{

F1
F2

}

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 16/86
16/86



Finite Element Analysis
1D element equations

A model of a spring.
We need to write a force displacement equation for each ’node’

F1 = ku1 − ku2
F2 = −ku1 + ku2

[
k −k

−k k

]{
u1
u2

}
=
{

F1
F2

}

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 16/86
16/86



Finite Element Analysis
1D element equations

A model of a spring.
We need to write a force displacement equation for each ’node’

F1 = ku1 − ku2
F2 = −ku1 + ku2

[
k −k

−k k

]{
u1
u2

}
=
{

F1
F2

}

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 16/86
16/86



Finite Element Analysis
1D element equations

A model of a spring.
We need to write a force displacement equation for each ’node’

F1 = ku1 − ku2
F2 = −ku1 + ku2

[
k −k

−k k

]{
u1
u2

}
=
{

F1
F2

}

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 16/86
16/86



Finite Element Analysis
1D element equations

A model of a spring.
We need to write a force displacement equation for each ’node’

F1 = ku1 − ku2
F2 = −ku1 + ku2

[
k −k

−k k

]{
u1
u2

}
=
{

F1
F2

}

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 16/86
16/86



Finite Element Analysis
1D element equations

A model of a spring.
We need to write a force displacement equation for each ’node’

F1 = ku1 − ku2
F2 = −ku1 + ku2

[
k −k

−k k

]{
u1
u2

}
=
{

F1
F2

}

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 16/86
16/86



Finite Element Analysis
2D element equations

k = tA(BT EB)
where:
• t: Thickness of the plate
• A: Area of the triangle
• E: Young’s modulus
• B: “shape” matrix

We assume linear transition of the
stress/strain between the nodes of
the element

B =y23 0 y31 0 y12 0
0 x32 0 x13 0 x31

x32 y23 x13 y31 x21 y13


xij = xi − xj
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Finite Element Analysis
Combining elements

How do we combine elements?
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Finite Element Analysis
Problem construction

In any of these cases, we are trying to solve a problem of force
and displacement

[
K
] {

u
}

=
{
F
}
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Finite Element Analysis
Applications in biomechanics

Why is this useful for biomechanics?
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Tissues of interest
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Bone morphology
Types of bones
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Bone morphology
Bone is a living tissue

https://www.youtube.com/watch?v=0dV1Bwe2v6c
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Composition of long bones

Basic structure is the osteon
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Bone properties
Modelling

Bone in general is modelled as a Poroelastic material.

Think of this as a sponge filled with water
Only that the sponge is closed so that no water escapes!

We’ve seen that σ = Eε for elastic materials

For poroelastic materials, we include a term that is proportional
to the pressure of the fluid

σ + Ap = Eε

Where p is the fluid pressure, and A is called the Biot coefficient
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Cartilage
Chemical Composition

Hyaline cartilage consists by 40% of Type II collagen. The rest is
mainly water and Proteoglycean.
For synovial joints, it is a thin layer (0.5 - 5 mm)
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Cartilage
Permeability

A very important aspect of cartilage modelling is permeability

Permeability
The property of a porous material that describes the ability of a
fluid to flow through the material.

Contrary to bone modelling, cartilage modelling takes into
consideration not just fluid compression, but also flow
This is a non-linear model
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Cartilage
Modelling

Cartilage is often modelled as a hyperelastic material.

More specifically a Mooney-Rivlin material
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Tendons and ligaments
Functionality

Tendons
Fibrous connective tissue connecting muscles to bones. They
help translate muscle force production into bone movement.

Ligaments
Fibrous connective tissue connecting bones to bones. They help
keep bones together, restricting some degrees of freedom in
articulations.
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Tendons and ligaments
Modelling

Tendons and ligaments are modelled as viscohyperelastic
materials.
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Tendons and ligaments
Modelling

Viscous effects
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Cardiovascular system
Description
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Blood vessels
Mechanical properties

Visco

hyperelastic, anisotropic, composite.

And it exhibits residual stresses!
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Fluid Dynamics
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Fluid systems
Cardiovascular system

From Anatomy & Physiology, Connexions Web site

• Pressure in vessels
• Blood flow rate
• Turbulence
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Fluid mechanics
Basic principles

Daniel Bernoulli 1700-1782

Incomplressible flow equation

u2

2 + gz + p

ρ
= constant

u: fluid flow speed
g: gravitational acceleration
z: elevation
p: pressure
ρ: fluid density
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Fluid mechanics
Navier-Stokes equations

∇~u = 0 (conservation of mass)

ρ
∂u

∂t
+ ρ~u∇~u = −∇p + µ∇2~u + ρF

(Newton’s second law F=ma)

We don’t understand these fully!

Claude-Lois Navier

Sir George Stokes
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Fluid mechanics
Reynolds number

Re = ρuL

µ
= Finertia

Fviscous

Osborne Reynolds 1842-1912
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Fluid mechanics
Reynolds number

ρ
∂u

∂t
+ ρ~u

D~u

Dt
= −∇p + µ∇2~u + ρF

For Re �1:

ρ
∂u

∂t
+ ∇p = +µ∇2~u

For Re �1:

ρ
∂u

∂t
+ ρ~u

D~u

Dt
= −∇p

Either of these are much simpler to compute
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Fluid mechanics
Reynolds number in cardiovascular system

From Anatomy & Physiology, Connexions Web site

• Ascending Aorta:
4500

• Descending Aorta:
3400

• Abdominal Aorta:
1250

• Femoral artery:
1000

• Arteriole: 0.09
• Capilaries: 0.001
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Fluid mechanics
Hagen-Poiseuille flow

Considering steady flow:

∆P = 8πµLQ

A2

∆P : Pressure drop
µ: Viscocity
L: Length
Q: Flow rate
A: Crossectional area
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Fluid mechanics
Pressure drop

∆P = 8πµLQ

A2

, A way to calculate pressure along the
cardiovascular system
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Blood characteristics
Fahraeus-Lindqvist effect

Blood viscosity drops at very small diameters (capilaries)
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Fluid mechanics
Flow in elastic walls

Anima RES youtube channel
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https://www.youtube.com/watch?v=S2vZtPXV7A0


Fluid biomechanics
How do we combine everything together?

A lot of complex phenomena, bring the models to its limits.
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Musculoskeletal modelling
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Muskuloskeletal modeling
Human anatomy

What does the word ’musculoskeletal’ mean to you?
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Articulated joints
Types of joints

Characterization based on degrees of freedom

By Produnis
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Musculoskeletal modelling
Movement production
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Muscle modelling
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Musculoskeletal modelling
Muscles

There are three types of muscles:

• Skeletal
• Smooth
• Cardiac
Very complex structure of fibers bundled
together
They generate force by contracting and
relaxing.
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Musculoskeletal modelling
Motor units

Motor units
Motor neuron + skeletal muscle.
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Muscle contraction
Action potential

By CThompson02, CC BY-SA 4.0
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Muscle contraction
Muscle fibers

Blausen.com staff (2014)
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Muscle contraction
Sarcomere

Richfield, David (2014)
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Muscluloskeltal modelling
Muscle models

From Thelen (2003)

• Maximum isometric force

• Optimal muscle fiber length
• Tendon slack length
• Maximum contraction

velocity
• Pennation angle
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Forward kinematics
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Human motion

Pose
Description of position and orientation of segments, with respect
to a reference frame

We use coordinate frames

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 59/86
59/86



Human motion

Pose
Description of position and orientation of segments, with respect
to a reference frame

We use coordinate frames

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 59/86
59/86



Forward kinematics
Definition

The Forward kinematics (FK) is a mathematical tool that allows
us to calculate the position and orientation (pose) of a body’s
point of interest if we know the state of the joints and the
lengths of the links.

In simple words
How do I calculate the pose of the human arm if I know the joint
angles?
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Forward kinematics
Definition

We describe the pose of the end-effector using a 4x4
transformation matrix (contains information about position and
orientation).

T =

 3 × 3 3 × 1

1 × 3 1 × 1

 =


trans−

rotation la−
tion

0 0 0 1

 (1)
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Forward kinematics
Calculation

To define the FK we perform the following steps:

• We identify the links and joints of the arm.
• We attach a fixed coordinate frame in a convenient location.
• We attach a coordinate frame on each link at their joints.
• We calculate the transformation between each subsequent

coordinate frame.
• We combine the transformations to calculate the overall

transformation from base to end-effector.
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Forward kinematics
Calculation

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Modelling in Biomechanics 63/86
63/86



Forward kinematics
Dynamic calculation

R4
3 =


1 0 0 0
0 c1,2,3 −s1,2,3 l3c1,2,3 + l2c1,2 + l1c1
0 s1,2,3 c1,2,3 l3s1,2,3 + l2s1,2 + l1s1 + 1
0 0 0 1
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Inverse kinematics
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Inverse and Forward kinematics
What is the difference?

Forward kinematics
I want to know where will my end-effector be, if I give specific
coordinates (values) to each joint

Inverse geometric model
I want to know what should the joint coordinates (values) be in
order for my end-effector to reach a specific pose
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Inverse and Forward kinematics
What is the difference?

The inverse model is usually more useful.

Can you imagine why?
But it is also most difficult to derive and we need the forward
kinematics to derive it.

Can you imagine why?
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Inverse kinematics model
Derivation


c1,2 −s1,2 0 l2c1,2 + l1c1
s1,2 c1,2 0 l2s1,2 + l1s1
0 0 1 0
0 0 0 1

 =


XX YX ZX Px

XY YY ZY Py

XZ YZ ZZ Pz

0 0 0 1



cos(q1 + q2) = Xx = Yy

sin(q1 + q2) = Xy = −Yx

l2cos(q1 + q2) + l1cosq1 = Px

l2sin(q1 + q2) + l1sinq1 = Py

0 = Pz

How do we solve this?
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Inverse kinematics model
Examples

q1

l1

q2l2

R(q1, q2) =


c1,2 −s1,2 0 l2c1,2 + l1c1
s1,2 c1,2 0 l2s1,2 + l1s1
0 0 1 0
0 0 0 1
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Inverse kinematics model
Analytical solution

q2 = cos−1 x2 + y2 − l2
1 − l2

2
2l1l2

q1 = atan2(x, y) − β = atan2(y, x) − atan2(k2, k1)

Where:

k1 = l1 + l2cos(q2)
k2 = l2sin(q2)
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Forward dynamics
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Dynamic modeling
What is it all about?

Kinematics:

description of motion of bodies or system of bodies

Dynamics (Kinetics):

description of the causes resulting in
those motions (i.e. forces and torques)
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Dynamic modeling
What is it all about?

Dynamic model
A set of equations that gives us the relationship between input
joint forces/torques and resulting joint accelerations.

Why is this useful?
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Lagrangian mechanics
A more sophisticated formulation of mechanics

Lagrange defined a basic quantity for any system of bodies as the
difference between its kinetic and potential energy.

L = K − P

We call this quantity the Lagrangian of the system.
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Definitions
Potential energy

Total potential energy
The total potential energy of a mechanism is the sum of the
potential energy of its parts
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Definitions
Kinetic energy

Total kinetic energy
The total kinetic energy of an object is the sum of its linear and
angular kinetic energy.

Ktotal = Klinear + Kangular = 1
2(mu2 + Iω2)
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Lagrangian of a mechanism
Potential energy

q1

l1

l2
q2

The total potential energy is:

P (q, q̇) = m1g
l1
2 sinq1 + m2g

(
l1sinq1 + l2

2 sin(q1 + q2)
)
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Lagrangian of a mechanism
Kinetic energy

The total Kinetic energy of the mechanism is:

q1

l1

l2
q2

K(q, q̇) = 1
2 q̇T

n∑
i=1

[
JT

vimiJvi + JT
ωiRiIiR

T
i Jωi

]
q̇ = 1

2 q̇T D(q)q̇
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Lagrangian of a mechanism
Let’s plug it all together

The equation of motion is:

d

dt

∂L

∂q̇
− ∂L

∂q
= τ

d

dt

∂L

∂q̇k

− ∂L

∂qk

= τk
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Lagrangian of a mechanism
Condensed form

We can write this equation in a more general form:

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ

The matrix D, contains information about the inertia of the
system, therefore contains all the masses and moments of inertia.

The matrix C has elements related to the centrifugal and
Coriolis terms

Finally, the term g contains the dependence of the potential
energy from the position of the mechanism.
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Dynamic model
Torques

How do we calculate torques?

fiso(α(t)fAL(lM)fv(iM) + fP L(lM))cosa − fisofSE(lT ) = 0
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Dynamic model
Forward dynamics

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ

q̈ = D(q)−1[τ − C(q, q̇)q̇ − g(q)]

q̈ = D(q)−1[τ(α, l, l̇) − C(q, q̇)q̇ − g(q)]
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Inverse dynamics
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Dynamic model
Inverse dynamics

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ
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Coming up next
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Questions?
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