
Laboratory 2

Direct geometric model

This laboratory presents an algorithm for the determination of the direct geometric
model for an ’open chain’ manipulation structure. We will:

• Define the homogeneous transformation matrices for the joints of a manipulation
structure with "n" degrees of freedom.

• Define and calculate the position vector Zp = [x y z]T for the specified manipulation
structure.

2.1 Anatomy of a robot
The arm of a robot is composed of a succession of rigid segments, called links. The

links are connected with each other through articulations, called joints. The links and
joints are forming a kinematic chain. The kinematic chain can be open or closed. Every
link in a closed kinematic chain, is connected at least with two joints. In the case of an
open kinematic chain, the first like (base) and the last link (end effector), have only a single
joint. There are two types of joints available when constructing a robot: joints that allow
a rotation (R) and joints that allow a translation (T). If a joint is actuated with the help
of a motor, it is called motor joint.

Figure 2.1: The KR 60 P2 Robot

In figure 2.1 the KR 60 P2 robot of KUKA Roboter GmbH is presented. All the joints
of this robot are rotational joints (robot RRR/RRR), denoted A1 − A6.
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The purpose of the direct geometric model is to provide a connection between the
movement of a joint (described with a variable for each one of the joints) and the movement
of the end effector. With other words, we intend to establish a link between the generalised
coordinates of each joint and the Cartesian coordinates of the end effector.

2.2 Direct geometric model of an open chain manipu-
lation structure

For a sequence of bodies i-j-k, within a kinematic chain of a industrial robot, the
iterative calculation of its position uses the relationship:

r
(i)
ik = r

(i)
ij +Rij · r(j)jk (2.1)

Rik = Rij ·Rjk (2.2)

where (i) is the index for a reference link towards which the position is referenced.
Vector r(i)ij defines the position of body (j) in respect to body (i), while Rij defines the

orientation of body (j) in respect to the body (i) (Direction cosine matrix, of dimension
3× 3).

Considering a sequence that includes the base body (denoted "1"):
1− j − k, (see figure 2.2) we can write:

r
(1)
1k = r

(1)
1j +R1j · r(j)jk (2.3)

R1k = R1j ·Rjk (2.4)

{1}

{j}

{k}

Figure 2.2: Sequence of Cartesian systems and the relationship between them

We can write the relationships (2.1) s, i (2.2) as: r(i)ik

1

 =

 Rij r(i)ij

0 1

 ·
 r(j)jk

1

 (2.5)
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Matrix

Hij =

 Rij r(i)ij

0 1

 (2.6)

is a homogeneous transformation matrix, with Rij orientation matrix (Direction Cosine
Matrix, with dimension 3× 3) and r(i)ij position vector (with dimension 3× 1).

The equation (2.3) can be written in the following form:

 r
(1)
1k

1

 =

 R1i r
(1)
1i

0 1

 ·
 r

(i)
ik

1

 (2.7)

The equation (2.7) together with relationship (2.5) leads to: r(1)1k

1

 =

 R1i r(1)1i

0 1

 ·
 Rij r(i)ij

0 1

 ·
 r(i)jk

1

 (2.8)

Keeping the notation from relationship (2.6) we obtain:

 r(1)1k

1

 = H1i ·Hij ·

 r(j)jk

1

 = H1j ·

 r(j)jk

1

 (2.9)

where

H1j = H1i ·Hij (2.10)

For a structure with "n" bodies, the position and orientation of body "n" (end-effector),
in respect to the base body 1 (inertial reference), are given by:

H1n = H12 ·H23 · .... ·Hn−1,n (2.11)

The homogeneous transformation matrices Hi−1,i are referring to the kinematic joints of
the structure (links i-1,i) which are rotational or translational. The definition the matrices
for these situation, is found in relationships (1.3 - 1.8).

The algorithm for the determination of the direct geometric model, could be the fol-
lowing:

1. We attach a variable on each motor joint (generalised coordinate) q1...qn.

2. We attach a coordinate system on each link, starting with the base (1) until the end
effector (n).
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3. We calculate iteratively, the position and orientation of each body in respect to the
base body, using relationships 2.3 and 2.4. Alternatively we can express this with
homogeneous matrices, from relationship 2.11

For example, for the structure of the RTT robot of figure 2.4, homogeneous elementary
transformation matrices, are:

Figure 2.4: Robot RTT

T12 =


cos(q1) − sin(q1) 0 0
sin(q1) cos(q1) 0 0

0 0 1 0
0 0 0 1

 (2.12)

T23 =


1 0 0 0
0 1 0 0
0 0 1 q2
0 0 0 1

 (2.13)

T34 =


1 0 0 0
0 1 0 q3 + L1

0 0 1 0
0 0 0 1

 (2.14)

For efficiency reasons, we will use the following notation1:
cos(qi)

not
= ci

sin(qi)
not
= si

pentru orice coordonată generalizată qi, i = 1..n (2.15)

1To each robot structure having n motor joints, we can attach n generalised coordinates (robot coordi-
nates) q1, q2, ... qn.
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In this condition, the matrix T12 becomes:

T12 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 (2.16)

We determine the direct geometric model using post-multiplication of the elementary
matrices that characterise the structure, starting from the base body until the end-effector:

T = T14 = T12 · T23 · T34 (2.17)

T14 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 ·


1 0 0 0
0 1 0 0
0 0 1 q2
0 0 0 1

 ·


1 0 0 0
0 1 0 q3 + L1

0 0 1 0
0 0 0 1

 (2.18)

resulting in direct geometric model in the following form:

T14 =


c1 −s1 0 −(q3 + L1) · s1
s1 c1 0 (q3 + L1) · c1
0 0 1 q2
0 0 0 1

 (2.19)

The position parameters of the end-effector are given in the final column of matrix T14:

ZP =


xef = −(q3 + L1) · sin(q1)
yef = (q3 + L1) · cos(q1)
zef = q2

(2.20)

2.3 Proposed problems
1. We consider the robotic structure from figure 2.5:

a) Determine the direct geometric model using iterative relationships 2.3 and 2.4.

b) Determine the direct geometric model using homogeneous transformation ma-
trices.

c) Calculate the position obtained by imposing the following position of joints:
q1 = 0
q2 = − π

20

q3 = π
20

q4 = 10
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Figure 2.5: Robot RRRT


