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Part I

Dynamic models of robots arms
Euler-Lagrange approach
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1. Euler-Lagrange equations

The Lagrangian is defined as

L = K − P, (1)

where K represents the total kinetic energy of the system and P represents the total potential energy of the
system.

The Euler-Lagrange equations that describes the dynamics of a n−DOF mechanical system are 1 :

d

dt

∂L

∂q̇i
− ∂L

∂qi
= τi, i = 1, ..., n, (2)

where qi represent generalized coordinates (in our case the joint angles) and τi generalized forces (in our
case motor torques) 2 .

The matrix form of the Euler-Lagrange equations is:

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ (3)

where q = [q1, ..., qn]T , τ = [τ1, ..., τn]T .
The matrix D(q) is called inertia matrix, it is symmetric and positive definite, and can be expressed in

terms of the kinetic energy:

K =
1

2
q̇TD(q)q̇ =

1

2

n∑
i,j

di,j(q)q̇iq̇j . (4)

The matrix C(q) takes into account centrifugal and Coriolis terms, and each k, j − th matrix element can
be calculated as:

ckj =
1

2

n∑
i=1

{
∂dkj
∂qi

+
∂dki
∂qj
− ∂dij
∂qk︸ ︷︷ ︸

cijk

}
q̇i. (5)

The last term G(q), sometimes called gravity term, is a column vector G = [g1...gn]T , where each k − th
term is derived from the potential energy:

gk(q) =
∂P

∂qk
, k = 1, ..., n. (6)

2. A 2DOF robot arm with spatial movement

Consider a 2DOF robot arm with two revolute joints, that can move in a 3D Cartesian space, with the
schematic representation from Figure 1. Because the first rotation axis is on the X axis, an the second on
the Y axis, that robot can move in a 3D space.

Geometric Model
The geometric model can be derived through transformation matrices from the base frame to the end

effector frame. The base frame coincides with the first frame (that is the frame of joint 1, with origin O1 in
the center of the joint). Thus the transformation matrix T01 is simply a rotation around X:

T01 = Rot(x, q1) =


1 0 0 0
0 cos(q1) −sin(q1) 0
0 sin(q1) cos(q1) 0
0 0 0 1

 .
1The Euler–Lagrange equations are also used in optimal control and calculus of variations. See [3] for an interesting discussion

on the interplay between the physical interpretation and the mathematical insight.
2This presentation is based on [1]. For a formal derivation of the Euler-Lagrange equations from Newton’s Laws based on

the principle of virtual work see chapter 6.1 of the book.
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Figure 1: Schematic representation of a 2DOF robot arm

From Frame 1 we arrive at Frame 2 (corresponding to the joint 2) through a translation on Z and a rotation
around Y (T12):

T12 = Transl(z, L1) ·Rot(y, q2) =


cos(q2) 0 sin(q2) 0

0 1 0 0
−sin(q2) 0 cos(q2) L1

0 0 0 1

 .
Finally, the end effector frame is obtained through a translation on Z (T23):

T23 = Transl(z, L2) =


1 0 0 0
0 1 0 0
0 0 1 L2

0 0 0 1

 .
The transformation matrix from the based frame to the end effector, that is the geometric model is
obtained through multiplication:

T = T03 = T01 ·T12 ·T23 =


cos(q2) 0 sin(q2) L2sin(q2)

sin(q1)sin(q2) cos(q1) −cos(q2)sin(q1) −sin(q1)(L1 + L2cos(q2))
−cos(q1)sin(q2) sin(q1) cos(q1)cos(q2) cos(q1)(L1 + L2cos(q2))

0 0 0 1

 . (7)

The position of the end effector with respect to the joint angles q1 and q2 is given by the first three
elements of the 4th column:

x = L2sin(q1), y = L1sin(q1)− L2sin(q1)cos(q2), z = L1cos(q1) + L2cos(q1)cos(q2). (8)

The orientation of the end effector is given by the submatrix R (lines 1-3 and columns 1-3 of T):

R =

 cos(q2) 0 sin(q2)
sin(q1)sin(q2) cos(q1) −cos(q2)sin(q1)
−cos(q1)sin(q2) sin(q1) cos(q1)cos(q2)

 . (9)
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Jacobian
The Jacobian relates the joint velocities to the linear and angular velocities of the end effector 3. We

will write the Jacobian as:

J =

[
Jv
Jω

]
= [J1, ..., Ji, ..., Jn], (10)

where Jv is the Jacobian component for the linear velocities (v), Jω the Jacobian component for the angular
velocities (ω), and Ji is the Jacobian coresponding to each ith joint.

If joint i is prismatic, with a translation movement along axis z, then

Ji =

[
zi−1

0

]
. (11)

If joint i is revolute, with rotation axis z, then

Ji =

[
zi−1 × (On −Oi−1)

zi−1

]
, (12)

where ’×’ stands for vector product.
Note that Oi is given by the first three elements of the 4th column of T0i, while zi (respectively yi,xi) is

given by column three of R0i (respetively column two, column one).
In what follows, we will denote with Jvc,i the Jacobian coresponding to linear velocities with respect to

the center of mass of link i 4. Because we consider the center of mass at the middle of each link, the only
thing that changes in Jvc,i, compared to Jv,i is that the length of link i is divided by two (that is Li is
replaced by Li/2).

For the 2DOF robot arm from Figure 1, with the geometric model 7, the Jacobian is:

J =



0 L2
2 cos(q2)

−L2
2 cos(q1)cos(q2)− L1cos(q1)

L2
2 sin(q1)sin(q2)

−L2
2 sin(q1)cos(q2)− L1sin(q1) −L2

2 cos(q1)sin(q2)
1 0
0 cos(q1)
0 sin(q1)

 . (13)

Thus, if we refer to link 2, the angular and linear Jacobians are:

Jvc2 = Jvc =

 0 L2
2 cos(q2)

−L2
2 cos(q1)cos(q2)− L1cos(q1)

L2
2 sin(q1)sin(q2)

−L2
2 sin(q1)cos(q2)− L1sin(q1) −L2

2 cos(q1)sin(q2)

 , (14)

Jω2 = Jω =

1 0
0 cos(q1)
0 sin(q1)

 . (15)

Further on, the angular and linear Jacobians for link 1 5 can be determined as:

Jvc1 =

 0 0

−L1
2 cos(q1) 0

−L1
2 sin(q1) 0

 , (16)

Jω1 =

1 0
0 0
0 0

 . (17)

3The Jacobian presented here is sometimes reffered in the literature as geometric Jacobian, to distinguish it from the
analytical Jacobian. It is often used in practice to calculate the Jacobian in respect with a given point (center of gravity) in 3D
space. For a detailed discussion on the Jacobian and velocity kinematics see [1] - chapter 4.

4Angular velocity is not a propriety of individual points, but linear velocity can be.
5Reconsider the calculations as if link 2 does not exist.
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Lagrangian
The Lagrangian is composed out of kinetic energy and potential energy. The kinetic energy has a

translational and a rotational component

K = Ktransl +Krot, (18)

given by the expressions:

Ktransl =
1

2
m1v

T
c1vc1 +

1

2
m2v

T
c2vc2 =

1

2
q̇T (m1J

T
vc1Jvc1 +m2J

T
vc2Jvc2)q̇, (19)

and

Krot =
1

2
q̇T (JT

ω2R2I2R
T
2 Jω2 + JT

ω1R1I1R
T
1 Jω1)q̇, (20)

with6

R2 = R, R1 = T01(1 : 3, 1 : 3), I2 = diag{0, I2y, 0}, I1 = diag{I1x, 0, 0}. (21)

After calculating the expressions for both components of the kinetic energy, we obtain the inertia matrix
D(q) as

D(q) =

[
d11 d12
d21 d22

]
=

[
I1x +

L2
1m1

4 + L2
1m2 +

L2
2m2

4 cos2(q2) + L1L2m2cos(q2) 0

0
m2L2

2
4 + I2y

]
. (22)

In deriving matrix C(q, q̇), we first calculate each cijk term from (5):

c111 =
∂d11
∂q1

+
∂d11
∂q1

− ∂d11
∂q1

= 0,

c112 =
∂d21
∂q1

+
∂d21
∂q1

− ∂d11
∂q2

=
L2
2m2

4
sin(2q2) + L1L2m2sin(q2),

c121 =
∂d12
∂q1

+
∂d11
∂q2

− ∂d12
∂q1

= −L
2
2m2

4
sin(2q2)− L1L2m2sin(q2),

c122 =
∂d22
∂q1

+
∂d21
∂q2

− ∂d12
∂q2

= 0,

c211 =
∂d11
∂q2

+
∂d12
∂q1

− ∂d21
∂q1

= c121,

c212 =
∂d21
∂q2

+
∂d22
∂q1

− ∂d21
∂q2

= 0,

c221 =
∂d12
∂q2

+
∂d12
∂q2

− ∂d22
∂q1

= 0,

c222 =
∂d22
∂q2

+
∂d22
∂q2

− ∂d22
∂q2

= 0.

In the end we obtain the matrix:

C(q, q̇) =

[
−L2

2m2

8 sin(2q2)q̇2 − 1
2L1L2m2sin(q2)q̇2 −L2

2m2

8 sin(2q2)q̇1 − 1
2L1L2m2sin(q2)q̇1

L2
2m2

8 sin(2q2)q̇1 + 1
2L1L2m2sin(q2)q̇1 0

]
. (23)

The potential energy is determined by multiplying the mass by the gravitational acceleration and the
height at the center of mass:

P1 = m1g
L1

2
cos(q1), P2 = m2g

(
L1cos(q1) +

L2

2
cos(q1)cos(q2)

)
, P = P1 + P2. (24)

Based on (6), the gravity term is determined as:

G(q) =

[
−m1gL1+2m2gL1

2 sin(q1)− m2gL2

2 sin(q1)cos(q2)

−m2gL2

2 cos(q1)sin(q2)

]
. (25)

This completes the dynamic model for our robot arm.

6Because in practice the off diagonals terms of the inertia matrices are neglectable, we consider here only the Principle
Moments of Inertia corresponding to each rotation axis (Ix, Iy or Iz). Note that the inertia moments are expressed in respect
with the body attached frame.
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3. Actuator dynamics

Each joint of the robot arm is controlled by an electric motor. The model of a armature controlled DC
motor is ([4]) 7 :

Jmiθ̈i + Biθ̇i︸︷︷︸
damping+backEMF

+ Fmi︸︷︷︸
friction

+ riτi︸︷︷︸
load torque

= (Kmi/Rai)vi︸ ︷︷ ︸
applied torque

, i = 1, 2, (26)

where θi is the rotor angular position of the ith motor, vi is the control voltage, Jmi is the motor inertia,
Fmi denotes friction, Rai is the armature resistance, Kmi is the torque constant. ri is the gear ratio such
that:

qi = riθi. (27)

Finally Bi = Bmi +KbiKmi/Rai, where Bmi is the damping constant and Kbi is the back EMF constant.
In matrix form, the motor equations can be written all together as:

Jmθ̈ +Bθ̇ + Fm +Rτ = Kmv, (28)

where

Jm = diag{Jmi}, B = diag{Bi}, R = diag{ri}, Fm = diag{Fmi}

Km = diag{Kmi/Rai}, v = [v1 v2]
T , θ = [θ1 θ2]

T , τ = [τ1 τ2]
T .

4. Nonlinear dynamics of the robot process

The dynamic model 3 of a mechanical system so far includes inertia and gravity, Coriolis and centripetal
forces. In practice other forces may need to be taken into account, like friction, backlash or elastic forces.
For our present study, we will consider sufficient to add only a viscous friction term 8

F (q̇) =

[
b1 0
0 b2

]
q̇ = Fbq̇. (29)

The robot dynamic model now becomes:

D(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) = τ. (30)

If we use (27) to replace θ with q in (28), isolate τ and plugin in the expression in 30 we obtain

(Jm +R2D(q))q̈ + (B +R2C(q, q̇))q̇ + (RFm +R2F (q̇)) +R2G(q) = RKmv, (31)

which can be rewritten more compactly, by a proper change of notations, as:

D′(q)q̈ + C ′(q, q̇)q̇ + F ′(q̇) +G′(q) = K ′v. (32)

This is now the nonlinear model of our robot process that we want to control, which has as inputs motor
voltages and outputs joint variables 9.

7The armature inductance Lai is considered negligible.
8Viscous friction is also called dynamic friction. Although static friction is very important in practice, it is usually ignored

in the analysis and design phase, because it is difficult to model exactly, and it would complicate the controller design.
9The sensor dynamics is considered negligible.


