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Agenda

Background
e Dynamics

The Lagrangian

e Dynamic and Kinetic energy
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Inertia and moments of intertia
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What did we do last week?

Recap

We defined a matrix that we called the Jacobian, that maps joint
velocities to link velocities.

u=Jq
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What did we do last week?

Recap

We split this matrix into two parts, one for the
for the linear velocity of the links.

T = Juq
w = Jomegaq
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What did we do last week?

Recan
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Dynamic modeling
What is it all about?

Kinematics:

Dynamics (Kinetics):
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Dynamic modeling
What is it all about?

Kinematics: description of motion of bodies or system of bodies

Dynamics (Kinetics):
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Dynamic modeling
What is it all about?

Kinematics: description of motion of bodies or system of bodies

Dynamics (Kinetics): desctiption of the causes resulimg in_
those motions (i.e. forces and torques)
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Dynamic modeling
What is it all about?

Dynamic model

A set of equations that gives us the relationship between
joint forces/torques and resulting joint accelerations.
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Dynamic modeling
What is it all about?

Dynamic model

A set of equations that gives us the relationship between input
joint forces/torques and resulting joint accelerations.

Why is this useful?
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Dynamic modeling
What is it all about?

Dynamic model

A set of equations that gives us the relationship between input
joint forces/torques and resulting joint accelerations.

Why is this useful?
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Dynamic modeling

Newton's equations
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which relates force and acceleration.

F=mz
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Dynamic modeling

Newton's equations

which relates force and acceleration.

We won't be using it though due to the complex equat‘iVQnéj‘itt;/\;/?i.ll
result when modeling kinematic chains. QN
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Dynamic modeling

Lagrange-Euler formulation of
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mechanics

Between 1772 and 1788 Lagrang@
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Lagrangian mechanics

A more sophisticated formulation of mechanics

Lagrange defined a basic quatity for any system of bodies as the
difference between its kinetic and potential energy.

L=K-P

We call this quantity the Lagrangian of the system.
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Lagrangian mechanics

A more sophisticated formulation of mechanics

Using this quantity, we can describe the evolution of any system
of bodies under the influence of a set of external forces using the
following equation:
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Definitions

Potential energy

Potential energy

The energy possessed by an object because of its position relative
to other objects, stresses within itself, its electric charge, or other

factors.
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Definitions

Potential energy

Potential energy
The energy possessed by an object because of its position relative

to other objects, stresses within itself, its electric charge, or other
factors.

In robotics, we deal with rigid objects, electrically neutLaT What
are the sources of potential energy? b “’W

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control



Definitions

Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.
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Definitions

Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.

P =mgh
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Definitions

Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.

P =mgh

Where m is the mass of the object, g is the gravitatioﬁj{

constant, and h is the height of the object. ‘»
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Definitions

Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.

P =mgh

Where m is the mass of the object, g is the gravitatioﬁél 9
constant, and h is the height of the object. \ TR 5

But height from where? What is the reference?
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Definitions

Potential energy

Reference for potential

Potential is only important when considering the difference of
potential. Therefore, the reference is not important, as long as it
does not change over time, and we use the same one for all the

objects.
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Definitions

Potential energy

Reference for potential

Potential is only important when considering the difference of
potential. Therefore, the reference is not important, as long as it
does not change over time, and we use the same one for all the

objects.
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Definitions

Potential energy

Reference for potential

Potential is only important when considering the difference of
potential. Therefore, the reference is not important, as long as it
does not change over time, and we use the same one for all the

objects.
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Definitions

Potential energy

Reference for potential
Potential is only important when considering the difference of

potential. Therefore, the reference is not important, as long as it
does not change over time, and we use the same one for all the

objects.
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Definitions

Kinetic energy

Kinetic energy

The energy of an object that it possesses due to its motion.
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Definitions

Kinetic energy

Kinetic energy

The energy of an object that it possesses due to its motion.

What properties are influencing the kinetic energy of an‘object.
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Definitions

Kinetic energy

2.00 150
175 125
150 1.00
125 075
1.00 050
075 025 —
050 0.00
025 -0.25
0.00 ~0.50
-05 0.0 05 10 15 2.0 25 -1.0 -0.5 0.0 05 10 15 2.0

Kinetic energy due to

linear velocity
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Definitions

Kinetic energy

The equation of kinetic energy due to linear velocity is

i
=L
4

i~

Where m is the mass of the object and u is the magnitude of its o
velocity (i.e. regardless of direction).

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control



Definitions

Kinetic energy

Where [ is the moment of inertia of the object, and w is its

| 7
angular velocity.
18/ 5
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Definitions

Kinetic energy

Total kinetic energy

The total kinetic energy of an object is the sum of its linear and
angular kinetic energy.

1
Ktotal = Klmeav" + Kangular = 5
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Definitions

Moment of inertia

Moment of inertia

A tensor that determines the torque needed for a desired angular
acceleration about a rotational axis.

The moment of inertia is the equivalent of mass, but for:

Ae

rotational movements. v \\
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Definitions

Moment of inertia

The moment of inertia shows us how 'difficult’ is it to rotate an
object around an arbitrary axis. It is related with how the mass of
the object is distributed in space.

vy

[zaz Izy Izz

This 'difficulty’ might be different for the same object, ‘but L
different axes. :
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Definitions

Moment of inertia

How do we calculate it? (for a system of bodies)

al 2 2 Loy = Iya =
k=1
N
2 2
Ly =Y mu(ag + 2;) I,=1, =
k=1
N
L. = Z mk(fz + yl%)
k=1
Iy, =1L, =
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Definitions

Moment of inertia

How do we calculate it? (for a continuous object)

Iye = —/// zyp(z,y,2)dV

Ly =— /// yzpltsys2)dV

L, = ///(?f +22)p(x,y, 2)dV Ly

Ly = [[[@+Pptzy, 204V L.

L.= [[[ @+ ety v L.
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Definitions

Moment of inertia
Seems difficult?
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Definitions

Moment of inertia
Seems difficult?

For some simple objects, we have analytical solutions for the
moment of inertia tensor.
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Definitions

Moment of inertia
Seems difficult?

For some simple objects, we have analytical solutions for the
moment of inertia tensor.

A

1 2
Sml® 0
24 /
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Definitions

Kinetic energy
Let's have a look at the angular kinetic energy again. We saw

that:

1
Kangula'r = §IW2
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Definitions

Kinetic energy

Let's have a look at the angular kinetic energy again. We saw
that:

1
— 2
Kangula'r - _Iw

be a tensor as well.
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Definitions
Kinetic energy

But Kinetic energy is a scalar, and the angular velocity is a
vector.
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Definitions
Kinetic energy

But Kinetic energy is a scalar, and the angular velocity is a
vector.

A

axb

" b
n

(C]

bxa a
=-axb

Y
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Definitions
Kinetic energy

But Kinetic energy is a scalar, and the angular velocity is a
vector. Therefore, we can calculate the angular kinetic energy
using the vectorial equation:

A

axb
. b
n
d
bxa
=-axb
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Definitions

Kinetic energy

But Kinetic energy is a scalar, and the angular velocity is a

vector. Therefore, we can calculate the angular kinetic energy

using the vectorial equation:

A

axb )
fi b 1 o &
(7] Kangular = §W Tw d\w
bxa a
=-axb

Y
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Definitions
Bringing it all together

We define the Lagrangian as the difference between Kinetic and
Potential energy of our system

L=K-P
where:
Potential Energy Kinetic Energy Momerit‘\;ofj‘infg\r\‘fia
P =mgh K = §(mu2—|—wTIw) BN
27
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Lagrangian mechanics
Equivalence with Newton

A
y

‘ﬁr Let's see if the Lagrangian mechanics

are giving us the same requtS >

F

Y
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Lagrangian mechanics
Equivalence with Newton

A

. A Kinetic energy
i h
1
1
1
1
1
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Potential energy:

P =mgy

Therefore:

L= tmg? - o

2




Lagrangian mechanics

Equivalence with Newton

A
y

‘.*—W

F

Y
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L = imy* — mgy
doL oL
dt oy Oy
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Lagrangian mechanics
Equivalence with Newton

A
y

‘ﬁr

F

Y
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Lagrangian mechanics
Equivalence with Newton

A
y

‘ﬁr

F

Y
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Lagrangian mechanics
Equivalence with Newton
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y
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Lagrangian mechanics
Equivalence with Newton

A
y

‘ﬁr
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Lagrangian mechanics

Equivalence with Newton

A
y

‘ﬁr

F

Y
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Questions?
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