Drone modeling

Aerodynamics, Dynamics, Control

December 11, 2018

Agenda

- Basic principles of aerodynamics
- How propellers work
- Drone design and flight principles
- Dynamic modeling
- Control

What have we seen so far

Articulated robots

Other types of robots

Quadrotor drones

What is a quadrotor?

Quadrotor drones

What is a quadrotor?

Aerodynamics Thrust-Lift-Drag

Aerodynamics Thrust-Lift-Drag

Thrust, Lift and Drag are related to each other and to the design of the airfoil

Angle of attack

7/30

Angle of attack

The ratio of lift to drag are also related to the 'angle of attack'

30

Propellers

Propellers

A propeller is many airwings with different angles of attack

Systems of reference and degrees of freedom

Quadrotor Propeller forces and torques

Connecting with the aerodynamics of airwings and propellers, each rotors produces a lifting force (F_i) and a torque (τ_i) .

Quadrotor Propeller forces and torques

Connecting with the aerodynamics of airwings and propellers, each rotors produces a lifting force (F_i) and a torque (τ_i) .

Both of these have to do with the design of the propeller, and are proportional to the square of the angular velocity of the propeller.

$$F_i = b\omega_i^2$$

$$\tau_i = d\omega_i^2$$

Systems of reference and degrees of freedom

- x, y, z: translation along x, y, z axes of the fixed frame
- ϕ, θ, ψ : rotation around x, y, z axes of the fixed frame

Systems of reference and degrees of freedom

- x, y, z: translation along x, y, z axes of the fixed frame
- ϕ, θ, ψ : rotation around x, y, z axes of the fixed frame

These are known as euler rotations (roll, pitch, yaw)

$$S = [\xi, \eta]^T$$
, where: $\xi = [x, y, z]^T$ and $\eta = [\phi, \theta, \psi]^T$

$$R_B^E(\eta) = \begin{bmatrix} c(\theta)c(\psi) & c(\psi)s(\theta)s(\phi) - c(\phi)s(\psi) & s(\phi)s(\psi) + c(\phi)c(\psi)s(\theta) \\ c(\theta)c(\psi) & c(\phi)c(\psi) + s(\theta)s(\phi)s(\psi) & c(\phi)s(\theta)s(\psi) - c(\psi)s(\phi) \\ -s(\theta) & c(\theta)s(\phi) & c(\theta)c(\phi) \end{bmatrix}$$

where:

$$\begin{array}{l} c(\theta) = cos(\theta) \\ s(\psi) = sin(\psi) \end{array}$$

30

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control

Achieving flight

30

Achieving flight in X configuration

Quad-X Configuration

30

Achieving flight in X configuration

Quad-X Configuration

• Translation on z: $\omega_1 = \omega_2 = \omega_3 = \omega_4$

Achieving flight in X configuration

Quad-X Configuration

• Translation on z:

$$\omega_1 = \omega_2 = \omega_3 = \omega_4$$

Rotation around x:

$$\omega_1 = \omega_3, \omega_2 = \omega_4$$

Achieving flight in X configuration

Quad-X Configuration

• Translation on z:

 $\omega_1 = \omega_2 = \omega_3 = \omega_4$

• Rotation around x:

 $\omega_1 = \omega_3, \omega_2 = \omega_4$

• Rotation around y:

 $\omega_1 = \omega_2, \omega_3 = \omega_4$

30

Achieving flight in X configuration

Quad-X Configuration

• Translation on z:

 $\omega_1 = \omega_2 = \omega_3 = \omega_4$

• Rotation around x:

- Rotation around y: $\omega_1 = \omega_2, \omega_3 = \omega_4$
- Rotation around z:

Achieving flight in X configuration

Quad-X Configuration

Translation on z:

- Rotation around x:
 ω₁ = ω₃, ω₂ = ω₄
- Rotation around y: $\omega_1 = \omega_2, \omega_3 = \omega_4$
- Rotation around z: $\omega_1 = \omega_4, \omega_2 = \omega_3$

Achieving flight in X configuration

Quad-X Configuration

• Translation on z:

- Rotation around x:
 ω₁ = ω₃, ω₂ = ω₄
- Rotation around y: $\omega_1 = \omega_2, \omega_3 = \omega_4$
- Rotation around z:

 ω₁ = ω₄, ω₂ = ω₃
- Translation on x: Rotation around y

Achieving flight in X configuration

Quad-X Configuration

• Translation on z:

- Rotation around x:
 ω₁ = ω₃, ω₂ = ω₄
- Rotation around y: $\omega_1 = \omega_2, \omega_3 = \omega_4$
- Rotation around z: $\omega_1 = \omega_4, \omega_2 = \omega_3$
- Translation on x: Rotation around y
- Translation on y: Rotation around x

Achieving flight in X configuration

Achieving flight in X configuration

• Translation on z:

 $\omega_1 = \omega_2 = \omega_3 = \omega_4$

Achieving flight in X configuration

• Translation on z:

 $\omega_1 = \omega_2 = \omega_3 = \omega_4$

• Rotation around x: $\omega_1 = \omega_3, \omega_2 \neq \omega_4$

Achieving flight in X configuration

- Translation on z:
 - $\omega_1 = \omega_2 = \omega_3 = \omega_4$
- Rotation around x: $\omega_1 = \omega_3, \omega_2 \neq \omega_4$
- Rotation around y: $\omega_1 \neq \omega_3, \omega_2 = \omega_4$

Achieving flight in X configuration

- Translation on z:
 ω₁ = ω₂ = ω₃ = ω₄
- Rotation around x:
 - $\omega_1 = \omega_3, \omega_2 \neq \omega_4$
- Rotation around y: $\omega_1 \neq \omega_3, \omega_2 = \omega_4$
- Rotation around z:

 $\omega_1 = \omega_4, \omega_2 = \omega_3$

Achieving flight in X configuration

• Translation on z:

 $\omega_1 = \omega_2 = \omega_3 = \omega_4$

- Rotation around x: $\omega_1 = \omega_3, \omega_2 \neq \omega_4$
- Rotation around y: $\omega_1 \neq \omega_3, \omega_2 = \omega_4$
- Rotation around z: $\omega_1 = \omega_4, \omega_2 = \omega_3$
- Translation on x: Rotation around y

Achieving flight in X configuration

• Translation on z:

- Rotation around x: $\omega_1 = \omega_3, \omega_2 \neq \omega_4$
- Rotation around y: $\omega_1 \neq \omega_3, \omega_2 = \omega_4$
- Rotation around z: $\omega_1 = \omega_4, \omega_2 = \omega_3$
- Translation on x: Rotation around y
- Translation on y: Rotation around x

The Lagrangian

Remember:

- x, y, z: translation along x, y, z axes of the fixed frame
- ϕ, θ, ψ : rotation around x, y, z axes of the fixed frame

$$S = \left[\xi,\eta\right]^T$$
 , where: $\xi = \left[x,y,z\right]^T$ and $\eta = \left[\phi,\theta,\psi\right]^T$

The Lagrangian

Remember:

- x, y, z: translation along x, y, z axes of the fixed frame
- ϕ, θ, ψ : rotation around x, y, z axes of the fixed frame

 $S = [\xi,\eta]^T$, where: $\xi = [x,y,z]^T$ and $\eta = [\phi,\theta,\psi]^T$ Therefore:

$$L(S, \dot{S}) = K_{lin} + K_{rot} - P = \frac{1}{2} \left(m \dot{\xi}^T \dot{\xi} + \dot{\eta}^T J(\eta) \dot{\eta} \right) - mgz$$

The Langrangian

$$L(S, \dot{S}) = K_{lin} + K_{rot} - P = \frac{1}{2} \left(m \dot{\xi}^T \dot{\xi} + \dot{\eta}^T J(\eta) \dot{\eta} \right) - mgz$$

Where $J(\eta)$ is the moments of inertia expressed in the fixed frame.

The Langrangian

$$L(S, \dot{S}) = K_{lin} + K_{rot} - P = \frac{1}{2} \left(m \dot{\xi}^T \dot{\xi} + \dot{\eta}^T J(\eta) \dot{\eta} \right) - mgz$$

Where $J(\eta)$ is the moments of inertia expressed in the fixed frame.

By differenciating, we can calculate the equation of motion of the quadrotor

The Langrangian

$$L(S,\dot{S}) = K_{lin} + K_{rot} - P = \frac{1}{2} \left(m \dot{\xi}^T \dot{\xi} + \dot{\eta}^T J(\eta) \dot{\eta} \right) - mgz$$

Where $J(\eta)$ is the moments of inertia expressed in the fixed frame.

By differenciating, we can calculate the equation of motion of the quadrotor

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{S}} - \frac{\partial L}{\partial S} = \begin{bmatrix} F_{transl} \\ F_{rot} \end{bmatrix}$$

Dynamic modeling The Langrangian

Since the translation kinetic and potential energies depend only on $\xi and\dot{\xi}$ and the rotational kinetic energy only on $\dot{\eta}$, we can break this down to two decoupled systems of equations.

$$\frac{d}{dt}\frac{\partial \left(K_{transl}+P\right)}{\partial \dot{S}} - \frac{\partial \left(K_{transl}+P\right)}{\partial S} = F_{transl}$$
$$\frac{d}{dt}\frac{\partial K_{rot}}{\partial \dot{S}} - \frac{\partial K_{rot}}{\partial S} = F_{rot}$$

Dynamic modeling The Langrangian

The first equation is easy to differenciate:

$$F_{transl} = m\ddot{\xi} + [0, 0, mg]^t$$

The second one is a bit more 'stiff', due to the moments of inertia:

$$F_{rot} = J(\eta)\ddot{\eta} + J(\dot{\eta})\dot{\eta} - \frac{1}{2}\frac{d}{d\eta}\left(\dot{\eta}^T J(\eta)\dot{\eta}\right) = J(\eta)\ddot{\eta} + C(\eta,\dot{\eta})\dot{\eta}$$

Dynamic modeling The forces

If we consider a hover flight, with very small changes in orientation, we need to consider a vertical force to achieve this:

$$F_{transl} = \left[0, 0, U_{coll}\right]^T$$

Dynamic modeling The forces

If we consider a hover flight, with very small changes in orientation, we need to consider a vertical force to achieve this:

$$F_{transl} = \left[0, 0, U_{coll}\right]^T$$

We need to express this force on the frame attached on the drone, therefore:

$$F_{transl} = R_B^E \left[0, 0, U_{coll} \right]^T$$

The torques

Since we usually express rotations on the frame attached on the drone, the rotational forces (torques), do not need to be 'transformed' in the drones body frame. Therefore:

$$F_{rot} = \left[U_{\phi}, U_{\theta}, U_{\psi}\right]^{T}$$

Putting it all together

Therefore, if we plug our forces in the dynamic model equation, we have:

$$\begin{split} \ddot{x} &= \left[c(\phi) s(\theta) c(\psi) + s(\phi) s(\psi) \right] \frac{U_{coll}}{m} \\ \ddot{y} &= \left[c(\phi) s(\theta) s(\psi) - s(\phi) c(\psi) \right] \frac{U_{coll}}{m} \\ \ddot{z} &= -g + c(\phi) c(\theta) \frac{U_{coll}}{m} \\ \begin{bmatrix} \ddot{\phi} \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} = J^{-1}(\eta) \left(\begin{bmatrix} U_{\phi} \\ U_{\theta} \\ U_{\psi} \end{bmatrix} - C(\eta, \dot{\eta}) \eta \right) \end{split}$$

Simplifications

Since we consider the hovering motion, this means that the rotations are small, therefore, for α very small we have:

 $\begin{aligned} \cos(\alpha) &\approx 1\\ \sin(\alpha) &\approx \alpha \end{aligned}$

Simplifications

Since we consider the hovering motion, this means that the rotations are small, therefore, for α very small we have:

 $cos(\alpha) \approx 1$ $sin(\alpha) \approx \alpha$

The collective force, can be also expressed as $U_{coll} = mg + \Delta U_{coll}$

Simplifications

Since we consider the hovering motion, this means that the rotations are small, therefore, for α very small we have:

 $cos(\alpha) \approx 1$ $sin(\alpha) \approx \alpha$

The collective force, can be also expressed as $U_{coll} = mg + \Delta U_{coll}$ Therefore, our equations of motion become:

$$\begin{aligned} \ddot{x} &= \theta g \\ \ddot{y} &= -\phi g \\ \ddot{z} &= \frac{\Delta U_{coll}}{m} \end{aligned}$$

What are the control inputs?

We need to consider again how does a drone achieve flight. For the plus configuration:

$$U_{coll} = F_1 + F_2 + F_3 + F_4$$

$$U_{\phi} = l(F_1 - F_3)$$

$$U_{\theta} = l(F_2 - F_4)$$

$$U_{\psi} = \tau_1 + \tau_3 - \tau_2 - \tau_4$$

What are the control inputs?

For the cross configurations Quad-X Configuration

 $U_{coll} = F_1 + F_2 + F_3 + F_4$ $U_{\phi} = \frac{\sqrt{2}}{2}l(F_1 + F_4 - F_2 - F_3)$ $U_{\theta} = \frac{\sqrt{2}}{2}l(F_1 + F_2 + F_3 + F_4)$ $U_{\psi} = \tau_1 + \tau_3 - \tau_2 - \tau_4$

Quadrotor Control

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?

• We made several assumptions to end up with a linear model

Control

- We made several assumptions to end up with a linear model
- We did not include motor dynamics

Control

- We made several assumptions to end up with a linear model
- We did not include motor dynamics
- We did not include aerodynamics

Control

- We made several assumptions to end up with a linear model
- We did not include motor dynamics
- We did not include aerodynamics
- When flying outdoors, there are huge disturbances (wind)

Control

- We made several assumptions to end up with a linear model
- We did not include motor dynamics
- We did not include aerodynamics
- When flying outdoors, there are huge disturbances (wind)
- A quadrotor is underactuated

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?

- We made several assumptions to end up with a linear model
- We did not include motor dynamics
- We did not include aerodynamics
- When flying outdoors, there are huge disturbances (wind)
- A quadrotor is underactuated

For simple slow motions though, we can try to control it with this simple model

Quadrotor Control

The model we have calculated is already linearized, so we can apply state feedback control. Our states are and inputs are:

$$x = \left[\xi, \dot{\xi}\right]^T$$

$$u = \left[U_{coll}, U_{\phi}, U_{\theta}, U_{\psi}\right]^{T}$$

The model can be writen in state space as:

$$\dot{x} = Ax + Bu$$

State feedback

By calculating the matrices **A** and **B**, we can calculate a feedback gain matrix **K**, that will stabilize the system. We do that using standard pole positioning. Our system has 12 states and 4 inputs, so the gain matrix will have dimensions 4×12 :

u = -Kx

State feedback

By calculating the matrices **A** and **B**, we can calculate a feedback gain matrix **K**, that will stabilize the system. We do that using standard pole positioning. Our system has 12 states and 4 inputs, so the gain matrix will have dimensions 4×12 :

$$u = -Kx$$

We then add an integrator to track a specific setpoint, in our case a position in space:

$$u = -Kx + u_o$$
$$u_o = [u_z, u_y, u_x, 0]^T$$

where:

$$u_{x} = \frac{ki_{x}}{s} \left(r_{x} - x \right), u_{y} = \frac{ki_{y}}{s} \left(r_{y} - y \right), u_{z} = \frac{ki_{z}}{s} \left(r_{z} - z \right)$$

Further reading/watching

Very cool TED talk on drone modeling: https://www.youtube.com/watch?v=w2itwFJCgFQ

Questions?

000