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Agenda

e Just a big summary!
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History and future
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Robots
A brief history
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1921: First use of the word (Rossum’s Universal Robots)
1942: Asimov describes the three laws of robotics

1956: First commercial robot called Unimate

1965: Homogeneous transformations for geometric model
description

1976: Robots go to space on board Viking 1 and 2 @ =
1997: PathFinder lands on Mars, becoming the flrstA,ro 0
another planet! .
2017: Atlas performs its first backflip

4
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Robots
A brief history

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control

1921: First use of the word (Rossum’s Universal Robots)
1942: Asimov describes the three laws of robotics

1956: First commercial robot called Unimate

1965: Homogeneous transformations for geometric model
description

1976: Robots go to space on board Viking 1 and 2 @ =
1997: PathFinder lands on Mars, becoming the flrstA,ro 0
another planet! .
2017: Atlas performs its first backflip
2020: Your robot!

4
/75‘


https://en.wikipedia.org/wiki/R.U.R.
https://en.wikipedia.org/wiki/Three_Laws_of_Robotics
https://en.wikipedia.org/wiki/Unimate

Course overview

Scope of this course

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Robotic Systems Control



Course overview

Scope of this course

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Robotic Systems Control



Course overview

Scope of this course

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control



Theoretical foundations
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Coordinate systems
The rule of the right hand

X

Y
&
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Transformations
Let's do it in 3D

5 15 15 15
20 20 20 20
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Transformations

Homogenious translations

10

Trans(X,a) = 8 é
00

10

Trans(Y,b) = 8 (1)
00

10

Trans(Z,c) = 8 (1)
00
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Transformations

Homogenious rotations

1 0 0
0 cos) —sind
Rot(X,0) = 0 sinf cosf
0 0 0
cosp 0 sing
0 1 0
Rot(Y, ¢) = —sing 0 coso
0 0 0
cosw —sinw 0
Rot(Z, ) = szgw coasw (1)
0 0 0

o oo H O OO

_ o O O — — — =,
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Transformations
Left and right multiplication

Vi, = Rot(X,0) x Vp

V5 = Vo * Rot(X,6)
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Robot description
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Joints

Revolute joints
A revolute joint is a joint that allows motion that changes the
orientation of a segment by rotating around a fixed axis. They
can add one degree of freedom to a robot.
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Joints

Prismatic joints
A prismatic joint is a joint that allows motion that changes the
position of a segment by translating along a axis. They can add
one degree of freedom to a robot.

———
I
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Robotic modeling

Work envelope
The combination of links and joints defines the degrees of
freedom to a robot. Besides that, it also defines the work
envelope of the robot.

Cartesian Articulated

&
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Direct Geometric Model
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Direct geometric model

Dynamic calculation

0 0 0
Ci23 —S123  [3c123+ 1o+ lic
5123 Ci23 35123+ lasio+1isp +1
0 0 1

1
0
0
0

Direct geometric model

The DGM is a transformation matrix, a function of the joint
positions and link lengths. If we know these variables, we can
calculate the position and orientation of the end effector (or any
other point).

17/75‘
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Direct geometric model

Definition

In simple words

How to | calculate the pose of the end-effector if | know the joint
angles?
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Denavit-Hartenberg convention

Definition
Axis i
Axis i-1
Axis i+1
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Denavit-Hartenberg convention

Calculating the parameters

To calculate the 4 parameters, we first construct coordinate
frames (CF) on for each joint using the following procedure:

e We align the z-axis of each CF with the axis of
rotation /translation of each joint
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Denavit-Hartenberg convention

Calculating the parameters

To calculate the 4 parameters, we first construct coordinate
frames (CF) on for each joint using the following procedure:

e We align the z-axis of each CF with the axis of
rotation /translation of each joint

* We identify the common perpendicular between subsequent
z-axes e
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Denavit-Hartenberg convention

Calculating the parameters

To calculate the 4 parameters, we first construct coordinate
frames (CF) on for each joint using the following procedure:

e We align the z-axis of each CF with the axis of
rotation /translation of each joint

* We identify the common perpendicular between subsequent
Z-axes L

N i,

e We align X; with the common perpendiculars betwéEthZ@-‘faﬁd

Zit1 R ¥\
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Denavit-Hartenberg convention

Calculating the parameters

To calculate the 4 parameters, we first construct coordinate
frames (CF) on for each joint using the following procedure:

e We align the z-axis of each CF with the axis of
rotation /translation of each joint

* We identify the common perpendicular between subsequent
Z-axes L

e We align X; with the common perpendiculars betwé?hi ngaﬁd
Ziy1 *.i A

e The positive direction for X; is from Z; to Z; 1
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Denavit-Hartenberg convention

Calculating the parameters

Once we have constructed the CFs, we identify the four
parameters as following:

e r;: distance between axes Z; and Z;,, measured on axis X;
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Denavit-Hartenberg convention

Calculating the parameters

Once we have constructed the CFs, we identify the four
parameters as following:

e r;: distance between axes Z; and Z;,, measured on axis X;

e «;: angle between axes Z; and Z;, 1, measured around-axis X;
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Denavit-Hartenberg convention

Calculating the parameters

Once we have constructed the CFs, we identify the four
parameters as following:

e r;: distance between axes Z; and Z;,, measured on axis X;
® «;: angle between axes Z; and Z;;;, measured around;axis X

e (;: distance between axes X; and X;,;, measured on-axis Z,;
+ o i ‘PH

A
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Denavit-Hartenberg convention

Calculating the parameters

Once we have constructed the CFs, we identify the four
parameters as following:

e r;: distance between axes Z; and Z;,, measured on axis X;
e «;: angle between axes Z; and Z;,;, measured arounck'axis X;
e d;: distance between axes X; and X;.1, measured on»‘axs \Z,,H

e @;: angle between axes X; and X, measured arou\d a>(s
Zit1
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Denavit-Hartenberg convention

Definition

DH Parameters
We define four transformation matrices for the transformation

from joint i to joint i+1. Two are rotation and two are

translation matrices.

Rt = [Xi] % [Z]
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Denavit-Hartenberg convention

Definition

DH Parameters
We define four transformation matrices for the transformation

from joint i to joint i+1. Two are rotation and two are
translation matrices.

Rt = [Xi] % [Z]

where
[Xi] = R(z, o) % T'(x,13)
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Denavit-Hartenberg convention

Definition

DH Parameters
We define four transformation matrices for the transformation

from joint i to joint i+1. Two are rotation and two are
translation matrices.

Rt = [Xi] % [Z]

where
[Xi] = R(z, o) % T'(x,13)

and
[Zl] = R(Z, 91) * T(Z, dz)
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Denavit-Hartenberg convention

Definition

DH Parameters
We define four transformation matrices for the transformation

from joint i to joint i+1. Two are rotation and two are
translation matrices.

Rt = [Xi] % [Z]

where
[Xi] = R(z, o) % T'(x,13)

and
[Zl] = R(Z, 91) * T(Z, dz)

therefore
R = R(z, ) * T(x,73) * R(2,0;) * T(2,d;)
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Denavit-Hartenberg convention

Visualising the angles
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Denavit-Hartenberg convention

Examples
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Denavit-Hartenberg convention

Examples
Zz<— |2 =‘/ |3'x
1x q3 3&
£ Z AN v
: (G

1
q2 k)ql d,r
0-1[I; [0
v HH 1-2|0 |o
2-3]1, |0
X 3-4[0 |0

4-5/0 [I5 |0 | n/2 )
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Denavit-Hartenberg convention

Parameters 6 and d

Revolute joints

If 7 is a revolute joint, parameter 6; is always variable and relates
to joint variable ¢;

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control




Denavit-Hartenberg convention

Parameters 6 and d

Revolute joints

If 7 is a revolute joint, parameter 6; is always variable and relates
to joint variable ¢;

Prismatic joints
If 7 is a prismatic joint, parameter d; is always variable and
relates to joint variable g;
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Inverse Kinematics Model
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Inverse kinematics
UpTown!

28 /75‘
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Inverse and Direct models
What is the difference?

Direct geometric model

| want to know where will my end-effector be, if | position each
joint to a specific position
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Inverse and Direct models
What is the difference?

Direct geometric model

| want to know where will my end-effector be, if | position each
joint to a specific position

Inverse geometric model

| want to know what should the joint coordinates be in order for
my end-effector to achieve a specific position
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Inverse kinematics model

Derivation

ci2 —s12 0 lbeig+ha Xx
s12 ci2 0 lasio+hisi| | Xy
0 0 1 0 Xz
0 0 O 1 0
Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control
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Inverse kinematics model

Derivation
ci2 —S12 0 lcro+hc Xx Yx Zx P,
s12 ¢z 0 lbsio+hs| | Xy Yy Zy P,
0 0 1 0 Xz Y, Zy P,
0 0 O 1 0 0 0 1

cos(q1 + g2) = Xy =Y,
sin(qi + q) = Xy ==Y,
lacos(qq + q2) + licosqr = P,
lasin(qi + q2) + lising = P,
0=P,

30 /
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Inverse kinematics model

Analytical solutions

The idea is to try to find an equation for each joint variable ¢,
that only depends on the pose or on other joint variables that
have already been expressed in terms of the pose.

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control



Inverse kinematics model

Analytical solutions

The idea is to try to find an equation for each joint variable ¢,
that only depends on the pose or on other joint variables that
have already been expressed in terms of the pose.

® We equate the DGM with the general homogeneous matrix
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Inverse kinematics model

Analytical solutions

The idea is to try to find an equation for each joint variable ¢,
that only depends on the pose or on other joint variables that
have already been expressed in terms of the pose.

® We equate the DGM with the general homogeneous matrix
e We identify joint variables that can be isolated
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Inverse kinematics model

Analytical solutions

The idea is to try to find an equation for each joint variable ¢,
that only depends on the pose or on other joint variables that
have already been expressed in terms of the pose.

® We equate the DGM with the general homogeneous matrix
e We identify joint variables that can be isolated

e We identify pair of joint variables that can be 5|mplrf1ed\by¢
division
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Inverse kinematics model

Analytical solutions

The idea is to try to find an equation for each joint variable ¢,
that only depends on the pose or on other joint variables that
have already been expressed in terms of the pose.

® We equate the DGM with the general homogeneous matrix
e We identify joint variables that can be isolated

We identify pair of joint variables that can be 5|mplrf d. by@
division €
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Velocities and the Jacobian
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Robot velocity

Background

We define a matrix called the 'Jacobian’ that shows us how can
we calculate the end-effector velocity if we know the join
velocities
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Robot velocity

Background

We define a matrix called the 'Jacobian’ that shows us how can
we calculate the end-effector velocity if we know the join
velocities

What is the size of £, ¢, and J7
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Defining the Jacobian

Combining angular and linear velocities

We can calculate each column of the Jacobian matrix individually.
Each column represents one joint. If joint i is revolute, then:

J; = -
If joint ¢ is prismatic, then:
Ji=13
. . . , /15
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Jacobian

Inverse velocity

We now have a method to define the end-effector velocity
(angular and linear) based on the joint velocities

§=Jq
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Jacobian

Inverse velocity

We now have a method to define the end-effector velocity
(angular and linear) based on the joint velocities

§=Jq

How do we do the opposite (i.e. define the joint velocrtfes for

specific end-effector velocity)?

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control



Jacobian

Inverse velocity

We now have a method to define the end-effector velocity
(angular and linear) based on the joint velocities

§=Jq

How do we do the opposite (i.e. define the joint velocrtfes for

specific end-effector velocity)?

JE=4q
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Dynamic Modeling
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Dynamic modeling
What is it all about?

Kinematics:

Dynamics (Kinetics):
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Dynamic modeling
What is it all about?

Kinematics: description of motion of bodies or system of bodies

Dynamics (Kinetics):
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Dynamic modeling
What is it all about?

Kinematics: description of motion of bodies or system of bodies

those motions (| e. forces and torques)
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Lagrangian mechanics

A more sophisticated formulation of mechanics

Lagrange defined a basic quatity for any system of bodies as the
difference between its kinetic and potential energy.

L=K-P

We call this quantity the Lagrangian of the system.
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Lagrangian mechanics

A more sophisticated formulation of mechanics

Using this quantity, we can describe the evolution of any system
of bodies under the influence of a set of external forces using the

following equation:

Giving the same results as Newton!
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Definitions

Potential and Kinetic energy

Potential energy
The energy possessed by an object because of its position relative
to other objects, stresses within itself, its electric charge, or other

factors.

Kinetic energy
The energy of an object that it possesses due to its motion.
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Definitions

Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.
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Definitions

Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.

P =mgh
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Definitions

Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.

P =mgh
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Definitions

Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.

P =mgh

constant, and A is the height of the object. af /

But height from where? What is the reference?

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control




Definitions

Kinetic energy

Total kinetic energy

The total kinetic energy of an object is the sum of its linear and
angular kinetic energy.

1
Ktotal = Klinear + Kangular = 5
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Definitions

Moment of inertia

Moment of inertia

A tensor that determines the torque needed for a desired angular
acceleration about a rotational axis.

' ‘\3\/‘

The moment of inertia is the equivalent of mass, but for'
rotational movements. 7
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Lagrangian of a robot

Dynamic energy

We need to calculate the total dynamic energy of the system.

The total dynamic energy is the
sum of the dynamic energies of
each segment. What is the
dynamic energy of eac;h
segment? {
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Lagrangian of a robot

Dynamic energy

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

We consider the mass of the link
to be concentrated at its center
of mass.
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Lagrangian of a robot

Dynamic energy

We consider the mass of the link
I, A to be concentrated at its center
of mass. Therefore:

l
P = m19§13m(h

45 /
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Lagrangian of a robot

Kinetic energy

Let's start with the linear kinetic energy first.
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Lagrangian of a robot

Kinetic energy

Let's start with the linear kinetic energy first.

Kiin = smu
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Lagrangian of a robot

Kinetic energy

Let's start with the linear kinetic energy first.

1
Kiin = 5mu

u=J,q—u®=q¢ J g
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Lagrangian of a robot

Kinetic energy

Let's start with the linear kinetic energy first.

1
Kiin = 5mu

u=J,q—u®=q¢ J g

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control



Lagrangian of a robot

Kinetic energy

Let's start with the linear kinetic energy first.

Klzn total — qT Z mz m}q

=1
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Lagrangian of a robot

Kinetic energy

. and then the angular kinetic energy:

7777777777
777777777
777777777
727777777,
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Lagrangian of a robot

Kinetic energy

Therefore, the total Kinetic energy of the robot is:

K= ;QT Z [miJZ;Jm' + JwiRilz’R;’TJwi] q

i=1
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Lagrangian of a robot

Condensed form

Eventually, after we do the derivation of the Lagrancian, we can
write the dynamic model of the robot in this general form:

D(q)i+Clq,q)¢+G(q) =7
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Lagrangian of a robot

Condensed form

Eventually, after we do the derivation of the Lagrancian, we can
write the dynamic model of the robot in this general form:

D(q)i+Clq,q)¢+G(q) =7

The matrix D, contains information about the inertia of the
system, therefore contains all the masses and moments of inertia.
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Lagrangian of a robot

Condensed form

Eventually, after we do the derivation of the Lagrancian, we can
write the dynamic model of the robot in this general form:

D(q)i+Clq,q)¢+G(q) =7

The matrix D, contains information about the inertia of the
system, therefore contains all the masses and moments of inertia.

The matrix C' has elements related to the cetrifugal
Coriolis terms
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Lagrangian of a robot

Condensed form

Eventually, after we do the derivation of the Lagrancian, we can
write the dynamic model of the robot in this general form:

D(q)i+ Clq,4)q+G(q) =

The matrix D, contains information about the inertia of the
system, therefore contains all the masses and moments of inertia.

The matrix C' has elements related to the cetrifugal
Coriolis terms

Finally, the term g contains the dependence of the potent|a|
energy from the position of the robot. 3
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Lagrangian of a robot

Condensed form

D(q)i+C(q,4)i+Glg) =7

We can show that:
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Lagrangian of a robot

Condensed form

D(q)i+Clg,9)q+Glg) =7

We can show that:

n
— T T T
D(q) = Y [miJfiJui + JL R R Ji)
i=1
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Lagrangian of a robot

Condensed form

D(q)i+Clg,9)q+Glg) =7

We can show that:

n
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Lagrangian of a robot

Condensed form

D(q)i+Clg,9)q+Glg) =7

We can show that:

n

and:

50 /
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Controlling the robot
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Control theory

Feedback loops

The robot is a process, and if we want to accomplish some tasks,
we need to be able to control its various aspects.

setpoint e action response
>

C > P

A simple process with feedback
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Robotic controllers

Independent joint control

With this control strategy, we control each joint individually.

(& T
qd1 1 PD 1 >
controller
Robot
e T process
qd2 2 PD 2 -
controller
53/
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Robotic controllers

Independent joint control

With this control strategy, we control each joint individually.

e T
qd1 1 PD 1 >
controller
Robot
e T rocess
qd2 2 PD 2 P
controller

How can we control the end-effector pose?
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Robotic controllers

Independent joint control

If we want to controle the pose of the end-effector, then we need
to solve the inverse kinematics to define the joint coordinates for
the specific pose.

pose
—»| lkine

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

O 1 PD
controller

1

O €2 PD
controller

T2

\4

\ 4

Robot
process
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Control theory

System linearization

V(g q)

A

Robot
process
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Other types of robots

56/75‘
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Quadrotor drones
What is a quadrotor?
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Quadrotor drones
What is a quadrotor?

Why four rotors?
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Quadrotor

Achieving flight in X configuration

Quad-X Configuration

1z " N\

ccw
Figure 1
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Quadrotor

Achieving flight in X configuration

Quad-X Configuration

e Translation on z:
W1 = Wy = W3 = Wy

1z " N\

ccw
Figure 1
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Quadrotor

Achieving flight in X configuration

Quad-X Configuration

ccw
Figure 1
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e Translation on z:
W1 = Wy = W3 = Wy

cw CCW ]
/’ 4\ ¢ Rotation around x:
W1 = Wz, Wz = Wy
Tx
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Quadrotor

Achieving flight in X configuration

Quad-X Configuration

e Translation on z:
W1 = Wy = W3 = Wy

cw CCW ]
/’ 4\ e Rotation around x:

Tx
W,

ccw
Figure 1
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W1 = Ws, W2 = Wy
e Rotation around y:
W1 = Wy, W3 = Wy,
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Quadrotor

Achieving flight in X configuration

Quad-X Configuration

1z " N\

ccw cw

Figure 1
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Translation on z:
Wp = Wz = Wz = Wy
Rotation around x:
W1 = Wz, Wz = Wy

Rotation around y:
W1 = Wy, W3 = Wy,

Rotation

58 /
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Quadrotor

Achieving flight in X configuration

Quad-X Configuration e Translation on z:

W1 = Wy = W3 = Wy

cw CCW ]
/’ 4\ e Rotation around x:

X W1 = Ws, W2 = Wy
T * Rotation around y:

W1 = Wy, W3 = Wy,

ccw . cw
Figure 1
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Quadrotor

Achieving flight in X configuration

Quad-X Configuration

ccw . cw
Figure 1
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Translation on z:
Wp = Wz = Wz = Wy
Rotation around x:
W1 = Wz, Wz = Wy

Rotation around y:
W1 = Wy, W3 = Wy,

Rotation around z:
W1 = Wy, Wy = Wy
Translation on x: Rotatlo\ﬁ?,
around y ~ \,;,,«; N




Quadrotor

Achieving flight in X configuration

Quad-X Configuration

ccw
Figure 1
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Translation on z:
Wp = Wz = Wz = Wy
Rotation around x:
W1 = Wz, Wz = Wy

Rotation around y:
W1 = Wy, W3 = Wy,

Rotation around z:
W1 = Wy, Wy = Wy
Translation on x: Rotatlo\ﬁ?,
around y ~ \,;,,«; N
Translation on y: Rotation =
around x
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Quadrotor

Achieving flight in X configuration

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Quad-Plus Configuration

Figure 2
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Quadrotor

Achieving flight in X configuration

e Translation on z:
W] = Wy = W3 = W4
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Quad-Plus Configuration

Figure 2
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Quadrotor
Achieving flight in X configuration

e Translation on z:
W) = Wz = Wz = Wy

e Rotation around x:
Wi = W3, Ws # Wy

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Quad-Plus Configuration

Figure 2
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Quadrotor
Achieving flight in X configuration

e Translation on z:
W) = Wz = Wz = Wy

e Rotation around x:
Wi = W3, Ws # Wy

e Rotation around y:
w1 # W3, Wy = Wy

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Quad-Plus Configuration

Figure 2
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Quadrotor

Achieving flight in X configuration

e Translation on z:
W) = Wz = Wz = Wy

e Rotation around x:
Wi = W3, Ws # Wy

e Rotation around y:
w1 # W3, Wy = Wy

e Rotation around z:
W1 = Wy, W2 = Ws

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Quad-Plus Configuration

Figure 2
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Quadrotor

Achieving flight in X configuration

e Translation on z:
W) = Wz = Wz = Wy

e Rotation around x:
Wi = W3, Ws # Wy

e Rotation around y:
w1 # W3, Wy = Wy

e Rotation around z:
W1 = Wy, W2 = Ws

e Translation on x: Rotation

around y

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Quad-Plus Configuration

Figure 2
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Quadrotor

Achieving flight in X configuration

e Translation on z: Quad-Plus Configuration
W) = Wz = Wz = Wy

e Rotation around x:
Wi = W3, Ws # Wy

e Rotation around y:
w1 # W3, Wy = Wy

e Rotation around z:
W1 = Wy, W2 = Ws

e Translation on x: Rotation
around y

e Translation on y: Rotation
around x

Figure 2
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Dynamic modeling
The Lagrangian

Remember:

of the fixed frame

<4 »
- %\w " e 1,y z: translation along x, y, z axes
» B -

) 2 N * ¢,0,¢: rotation around x,_y, z axes
V\I/X of the fixed frame - @
& i ’
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Dynamic modeling
The Lagrangian

Remember:

of the fixed frame

<4 »
. %ﬁw “ e x,y,z: translation along x, y, z axes
» B -

* ¢,0,¢: rotation around x,_y, z axes

V\I/ i ' of the fixed frame . \
E @%\ i : ?/s
S=1&n", where: £ =[z,y,2]" and = [9,0,9]" = |
Therefore: K ¥

L(Sv S) - Klin + Krot - P= 5 (mgTé- + UTJ(H)U) —mgz N\‘J
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Dynamic modeling
Putting it all together

Therefore, if we plug our forces in the dynamic model equation,

we have:
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Other types of robots
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Wheeled robots

Instantaneous center of rotation

Every motion can be modeled as a rotation around a point. For a
circular motion, this point is fixed, but for a more complex
motion it is constantly moving.
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Wheeled robots

Instantaneous center of rotation

Every motion can be modeled as a rotation around a point. For a
circular motion, this point is fixed, but for a more complex
motion it is constantly moving.
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Wheeled robots

Instantaneous center of rotation

Every motion can be modeled as a rotation around a point. For a
circular motion, this point is fixed, but for a more complex
motion it is constantly moving.
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Wheeled robots

Instantaneous center of rotation

Every motion can be modeled as a rotation around a point. For a
circular motion, this point is fixed, but for a more complex
motion it is constantly moving.
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Wheeled robots

Instantaneous center of rotation
Every motion can be modeled as a rotation around a point. For a

circular motion, this point is fixed, but for a more complex
motion it is constantly moving.

Where is the ICR for straight motion?
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Differential drive

Kinematics modeling

Kinematics model in the robot frame

TN

>
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Differential drive

Kinematics modeling

Kinematics model in the world frame

UL
U
y X
U 2)
R y o
X
> o
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Tricycle

Kinematics model

Kinematics model in the robot body frame:

a

u(t) =
w(t) =

ICR g

Tassos Natsakis tassos.natsakis@aut.utcluj.ro
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us(t)cos(a(t)) e =~

Us

d

) sm(a(f)j '



Tricycle

Kinematics model

Kinematics model in the world body frame:

A

A & = uscos(a(t)) cos(0(1)
d i = ugcos(a(t)) sm(e(%)
y 0(t) = = sin(a(;
. ‘L
< >
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Four wheels

Ackerman drive

For this to work, the steering of the two wheels must be
coordinated:

a i
A
e d
ICR I I
R
L
68 /
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Four wheels

Ackerman drive

For this to work, the steering of the two wheels must be
coordinated:

ICR I I

a > [ when turning left
B > «a: when turning right
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Four wheels

Ackerman drive

We can easily calculate the equivalent virtual angle v

al vy|.B
d
ICR I I
R
L
69 /
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Four wheels

Ackerman drive

We can easily calculate the equivalent virtual angle v

al vy|.B I
cot(7y) = cot(a) + 2

v
ICR I I

d cot(7y) = cot(5) —

R
F
¥
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Four wheels

Ackerman drive

We can easily calculate the equivalent virtual angle v

al vy|.B

q t(y) = cot(a) + =

co = —

K 2d

A
| | ) =)
ICR I I ] ) P e S 3
l I The kinematics models then are
R the same as for a tricy‘d'e“ with
) steering angle ~y e\
69
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Mobile robots

Motion planning methods

Roadmap approaches:
Reduce all the possible paths to
a subset of them

Cell decomposition:
Account for all of the free space

Potential fields: Bug algorithms: :
Local control strategies, Limited knowledge 6f ~
optimality environment
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Actuators and Sensors
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Actuators

What type of actuator? Control signal?
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Actuators

What type of actuator? Control signal?
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Actuators

What type of actuator? Control signal?
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Actuators

What type of actuator? Control signal?
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Sensors
Many many types

There is practically a huge amount of sensors used in robots,
depending on the application
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Sensors
Many many types

There is practically a huge amount of sensors used in robots,
depending on the application
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Sensors
Many many types

There is practically a huge amount of sensors used in robots,
depending on the application
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Sensors
Many many types

There is practically a huge amount of sensors used in robots,
depending on the application

And many many more
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What's next?
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Questions?
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