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Agenda

• Just a big summary!
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History and future
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Robots
A brief history

• 1921: First use of the word (Rossum’s Universal Robots)
• 1942: Asimov describes the three laws of robotics
• 1956: First commercial robot called Unimate
• 1965: Homogeneous transformations for geometric model

description
• 1976: Robots go to space on board Viking 1 and 2
• 1997: PathFinder lands on Mars, becoming the first robot on

another planet!
• 2017: Atlas performs its first backflip

• 2020: Your robot!
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Course overview
Scope of this course
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Theoretical foundations
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Coordinate systems
The rule of the right hand
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Transformations
Let’s do it in 3D
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Transformations
Homogenious translations

Trans(X, a) =


1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1



Trans(Y, b) =


1 0 0 0
0 1 0 b
0 0 1 0
0 0 0 1



Trans(Z, c) =


1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1


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Transformations
Homogenious rotations

Rot(X, θ) =


1 0 0 0
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1



Rot(Y, φ) =


cosφ 0 sinφ 0

0 1 0 0
−sinφ 0 cosφ 0

0 0 0 1



Rot(Z, ω) =


cosω −sinω 0 0
sinω cosω 0 0

0 0 1 0
0 0 0 1


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Transformations
Left and right multiplication

V
′
O = Rot(X, θ) ∗ VO V

′
O = VO ∗Rot(X, θ)
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Robot description
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Joints
Revolute joints

A revolute joint is a joint that allows motion that changes the
orientation of a segment by rotating around a fixed axis. They
can add one degree of freedom to a robot.
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Joints
Prismatic joints

A prismatic joint is a joint that allows motion that changes the
position of a segment by translating along a axis. They can add
one degree of freedom to a robot.
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Robotic modeling
Work envelope

The combination of links and joints defines the degrees of
freedom to a robot. Besides that, it also defines the work
envelope of the robot.
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Direct Geometric Model
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Direct geometric model
Dynamic calculation

R4
0 =


1 0 0 0
0 c1,2,3 −s1,2,3 l3c1,2,3 + l2c1,2 + l1c1
0 s1,2,3 c1,2,3 l3s1,2,3 + l2s1,2 + l1s1 + 1
0 0 0 1


Direct geometric model
The DGM is a transformation matrix, a function of the joint
positions and link lengths. If we know these variables, we can
calculate the position and orientation of the end effector (or any
other point).
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Direct geometric model
Definition

In simple words
How to I calculate the pose of the end-effector if I know the joint
angles?
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Denavit-Hartenberg convention
Definition
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Denavit-Hartenberg convention
Calculating the parameters

To calculate the 4 parameters, we first construct coordinate
frames (CF) on for each joint using the following procedure:
• We align the z-axis of each CF with the axis of

rotation/translation of each joint

• We identify the common perpendicular between subsequent
z-axes

• We align Xi with the common perpendiculars between Zi and
Zi+1

• The positive direction for Xi is from Zi to Zi+1
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Denavit-Hartenberg convention
Calculating the parameters

Once we have constructed the CFs, we identify the four
parameters as following:
• ri: distance between axes Zi and Zi+1, measured on axis Xi

• αi: angle between axes Zi and Zi+1, measured around axis Xi

• di: distance between axes Xi and Xi+1, measured on axis Zi+1

• θi: angle between axes Xi and Xi+1, measured around axis
Zi+1
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Denavit-Hartenberg convention
Definition

DH Parameters
We define four transformation matrices for the transformation
from joint i to joint i+1. Two are rotation and two are
translation matrices.

Ri+1
i = [Xi] ∗ [Zi]

where
[Xi] = R(x, αi) ∗ T (x, ri)
and
[Zi] = R(z, θi) ∗ T (z, di)
therefore
Ri+1
i = R(x, αi) ∗ T (x, ri) ∗R(z, θi) ∗ T (z, di)
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Denavit-Hartenberg convention
Visualising the angles
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Denavit-Hartenberg convention
Examples
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Denavit-Hartenberg convention
Parameters θ and d

Revolute joints
If i is a revolute joint, parameter θi is always variable and relates
to joint variable qi

Prismatic joints
If i is a prismatic joint, parameter di is always variable and
relates to joint variable qi
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Inverse Kinematics Model

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control 27/75
27/75



Inverse kinematics
UpTown!
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Inverse and Direct models
What is the difference?

Direct geometric model
I want to know where will my end-effector be, if I position each
joint to a specific position

Inverse geometric model
I want to know what should the joint coordinates be in order for
my end-effector to achieve a specific position
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Inverse kinematics model
Derivation


c1,2 −s1,2 0 l2c1,2 + l1c1
s1,2 c1,2 0 l2s1,2 + l1s1
0 0 1 0
0 0 0 1

 =


XX YX ZX Px
XY YY ZY Px
XZ YZ ZZ Px
0 0 0 1



cos(q1 + q2) = Xx = Yy

sin(q1 + q2) = Xy = −Yx
l2cos(q1 + q2) + l1cosq1 = Px

l2sin(q1 + q2) + l1sinq1 = Py

0 = Pz

We are looking for this

q1 = f(Px, Py)
q2 = g(Px, Py)
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Inverse kinematics model
Analytical solutions

The idea is to try to find an equation for each joint variable qn
that only depends on the pose or on other joint variables that
have already been expressed in terms of the pose.

• We equate the DGM with the general homogeneous matrix
• We identify joint variables that can be isolated
• We identify pair of joint variables that can be simplified by

division
• We identify pair of joint variables that can be simplified by

trigonometry
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Velocities and the Jacobian
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Robot velocity
Background

We define a matrix called the ’Jacobian’ that shows us how can
we calculate the end-effector velocity if we know the join
velocities

ξ = Jq̇

What is the size of ξ, q̇, and J?
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Defining the Jacobian
Combining angular and linear velocities

We can calculate each column of the Jacobian matrix individually.
Each column represents one joint. If joint i is revolute, then:

Ji =
[
zi × (on − oi)

zi

]

If joint i is prismatic, then:

Ji =
[
zi
0

]
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Jacobian
Inverse velocity

We now have a method to define the end-effector velocity
(angular and linear) based on the joint velocities

ξ = Jq̇

How do we do the opposite (i.e. define the joint velocities for
specific end-effector velocity)?

J−1ξ = q̇
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Dynamic Modeling
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Dynamic modeling
What is it all about?

Kinematics:

description of motion of bodies or system of bodies

Dynamics (Kinetics):

desctiption of the causes resulting in
those motions (i.e. forces and torques)
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Lagrangian mechanics
A more sophisticated formulation of mechanics

Lagrange defined a basic quatity for any system of bodies as the
difference between its kinetic and potential energy.

L = K − P

We call this quantity the Lagrangian of the system.

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control 38/75
38/75



Lagrangian mechanics
A more sophisticated formulation of mechanics

Using this quantity, we can describe the evolution of any system
of bodies under the influence of a set of external forces using the
following equation:

d

dt

∂L

∂q̇
− ∂L

∂q
= τ

Giving the same results as Newton!
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Definitions
Potential and Kinetic energy

Potential energy
The energy possessed by an object because of its position relative
to other objects, stresses within itself, its electric charge, or other
factors.

Kinetic energy
The energy of an object that it possesses due to its motion.
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Definitions
Potential energy

The most common source of potential energy in robotics is the
gravitational field of Earth.

P = mgh

Where m is the mass of the object, g is the gravitational
constant, and h is the height of the object.

But height from where? What is the reference?
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Definitions
Kinetic energy

Total kinetic energy
The total kinetic energy of an object is the sum of its linear and
angular kinetic energy.

Ktotal = Klinear +Kangular = 1
2(mu2 + Iω2)
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Definitions
Moment of inertia

Moment of inertia
A tensor that determines the torque needed for a desired angular
acceleration about a rotational axis.

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



The moment of inertia is the equivalent of mass, but for
rotational movements.
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Lagrangian of a robot
Dynamic energy

We need to calculate the total dynamic energy of the system.

q1

l1

l2
q2

The total dynamic energy is the
sum of the dynamic energies of
each segment. What is the
dynamic energy of each
segment?
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Lagrangian of a robot
Dynamic energy

q1

l1

We consider the mass of the link
to be concentrated at its center
of mass.

Therefore:

P1 = m1g
l1
2 sinq1
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Lagrangian of a robot
Kinetic energy

Let’s start with the linear kinetic energy first.

q1

l1

l2
q2

Klin = 1
2mu

2

u = Juq̇ 7→ u2 = q̇TJTu Juq̇

Klin = 1
2mq̇

TJTu Juq̇

Klin,total = 1
2 q̇

T
n∑
i=1

[miJ
T
uiJui]q̇
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Lagrangian of a robot
Kinetic energy

... and then the angular kinetic energy:

q1

l1

l2
q2

Klin = 1
2Iω

2 = 1
2 q̇

T
n∑
i=1

[JTωiRiIiR
T
i Jωi]q̇
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Lagrangian of a robot
Kinetic energy

Therefore, the total Kinetic energy of the robot is:

q1

l1

l2
q2

K = 1
2 q̇

T
n∑
i=1

[
miJ

T
viJvi + JωiRiIiR

T
i Jωi

]
q̇
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Lagrangian of a robot
Condensed form

Eventually, after we do the derivation of the Lagrancian, we can
write the dynamic model of the robot in this general form:

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ

The matrix D, contains information about the inertia of the
system, therefore contains all the masses and moments of inertia.

The matrix C has elements related to the cetrifugal and
Coriolis terms

Finally, the term g contains the dependence of the potential
energy from the position of the robot.
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Lagrangian of a robot
Condensed form

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ

We can show that:

D(q) =
n∑
i=1

[
miJ

T
viJvi + JTωiRiIiR

T
i Jωi

]

ckj =
n∑
i=1

cijk(q)q̇i =
n∑
i=1

1
2{∂dkj

∂qj
+ ∂dki
∂qj

− ∂dij
∂qk

}q̇i

and:

G(q) = ∂P

∂q
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Controlling the robot
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Control theory
Feedback loops

The robot is a process, and if we want to accomplish some tasks,
we need to be able to control its various aspects.

◦ − C P
setpoint e action response

A simple process with feedback

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control 52/75
52/75



Robotic controllers
Independent joint control

With this control strategy, we control each joint individually.

Robot
process

PD
controller

PD
controller

-

-

qd1

qd2

e1

e2

τ1

τ2

q1

q2

How can we control the end-effector pose?
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Robotic controllers
Independent joint control

If we want to controle the pose of the end-effector, then we need
to solve the inverse kinematics to define the joint coordinates for
the specific pose.

Robot
process

PD
controller

PD
controller

-

-
Ikine

pose

qd1

qd2

e1

e2

τ1

τ2

q1

q2
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Control theory
System linearization

Robot
process+D(q)

V (q, q̇)

a τ

q

q̇
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Other types of robots
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Quadrotor drones
What is a quadrotor?

Why four rotors?
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Quadrotor
Achieving flight in X configuration

• Translation on z:
ω1 = ω2 = ω3 = ω4

• Rotation around x:
ω1 = ω3, ω2 = ω4

• Rotation around y:
ω1 = ω2, ω3 = ω4

• Rotation around z:
ω1 = ω4, ω2 = ω3

• Translation on x: Rotation
around y

• Translation on y: Rotation
around x
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Dynamic modeling
The Lagrangian

Remember:

• x, y, z: translation along x, y, z axes
of the fixed frame

• φ, θ, ψ: rotation around x, y, z axes
of the fixed frame

S = [ξ, η]T , where: ξ = [x, y, z]T and η = [φ, θ, ψ]T

Therefore:

L(S, Ṡ) = Klin +Krot − P = 1
2

(
mξ̇T ξ̇ + η̇TJ(η)η̇

)
−mgz
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Dynamic modeling
Putting it all together

Therefore, if we plug our forces in the dynamic model equation,
we have:

ẍ =
[
c(φ)s(θ)c(ψ) + s(φ)s(ψ)

] Ucoll

m

ÿ =
[
c(φ)s(θ)s(ψ) − s(φ)c(ψ)

] Ucoll

m

z̈ = −g + c(φ)c(θ)Ucoll

mφ̈θ̈
ψ̈

 = J−1(η)


UφUθ
Uψ

 − C(η, η̇)η

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Other types of robots
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Wheeled robots
Instantaneous center of rotation

Every motion can be modeled as a rotation around a point. For a
circular motion, this point is fixed, but for a more complex
motion it is constantly moving.

Where is the ICR for straight motion?
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Differential drive
Kinematics modeling

Kinematics model in the robot frame

[
u
ω

]
=


r

2
r

2−r
L

r

L


[
ωL
ωR

]
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Differential drive
Kinematics modeling

Kinematics model in the world frame

ẋẏ
θ̇

 =

cosθ 0
sinθ 0

0 1


[
u
ω

]
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Tricycle
Kinematics model

Kinematics model in the robot body frame:

u(t) = us(t)cos(α(t))

ω(t) = us(t)
d

sin(α(t))
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Tricycle
Kinematics model

Kinematics model in the world body frame:

ẋ = uscos(α(t)) cos(θ(t))
ẋ = uscos(α(t)) sin(θ(t))

θ̇(t) = us(t)
d

sin(α(t))
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Four wheels
Ackerman drive

For this to work, the steering of the two wheels must be
coordinated:

α > β: when turning left
β > α: when turning right
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Four wheels
Ackerman drive

We can easily calculate the equivalent virtual angle γ

cot(γ) = cot(α) + L

2d

cot(γ) = cot(β) − L

2d

The kinematics models then are
the same as for a tricycle with
steering angle γ
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Mobile robots
Motion planning methods

Roadmap approaches:
Reduce all the possible paths to
a subset of them

Cell decomposition:
Account for all of the free space

Potential fields:
Local control strategies,
optimality

Bug algorithms:
Limited knowledge of
environment
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Actuators and Sensors
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Actuators

What type of actuator? Control signal?
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Sensors
Many many types

There is practically a huge amount of sensors used in robots,
depending on the application

And many many more
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What’s next?
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Questions?
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