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Abstract— Rehabilitation promoting “assistance-as-needed”
is considered a promising scheme of active rehabilitation, since
it can promote neuroplasticity faster and thus reduce the time
needed until restoration. To implement such schemes using
robotic devices, it is crucial to be able to predict accurately
and in real-time the intention of motion of the patient. In
this study, we present an intention-of-motion model trained
on healthy volunteers. The model is trained using kinematics
and muscle activation time series data, and returns future
predicted values for the kinematics. We also present the results
of an analysis of the sensitivity of the accuracy of the model
for different amount of training datasets and varying lengths
of the prediction horizon. We demonstrate that the model
is able to predict reliably the kinematics of volunteers that
were not involved in its training. The model is tested with
three types of motion inspired by rehabilibation tasks. In
all cases, the model is predicting the arm kinematics with a
Root Mean Square Error (RMSE) below 0.12m. Being a non
person-specific model, it could be used to predict kinematics
even for patients that are not able to perform any motion
without assistance. The resulting kinematics, even if not fully
representative of the specific patient, might be a preferable
input for a robotic rehabilitator than predefined trajectories
currently in use.

Clinical relevance- This model predicts intention of motion
for use as a setpoint for robotic rehabilitators. This can be
useful for patients that are not able to perform motions without
assistance.

I. INTRODUCTION

In the past two decades, robots have frequently been
used for assisting rehabilitating patients, either to promote
neuroplasticity after a stroke, or to re-train muscles after an
accident or trauma. The benefits of using robots for reha-
bilitation are numerous: patients can recover faster, clinics
can treat more patients, and physiotherapists do not need
to support the heavy burden of assisting patients. However,
robotic rehabilitation has not reached maturity in the clinical
setting yet.

Two of the most prominent solutions for robotic rehabilita-
tion are exoskeletons and end-effector devices[1]. Exoskele-
tons allow a vast variety of motions with a device that shares
the joint space of the human structure that is rehabilitated[2].
End-effector devices on the other hand offer assistance for
a limited type of motions, but are cheaper to develop and
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maintain. A third solution that is yet to be explored is the
use of robotic arms. Collaborative robotic arms have been
proven safe to be used in close proximity with humans [3],
and can offer a large number of benefits. First of all, there
is no development cost as they can be acquired off the shelf.
The set up time is minimal when used in rehabilitation, as
they require a single point of attachment with the patient.
Nevertheless, they provide a high degree of flexibility of
motions that are supported for rehabilitation.

The main challenge of using robotic arms for rehabilitation
is the complexity in calculating the trajectory that must be
executed by the robot. This would be relatively simple to
resolve in passive rehabilitation schemes, where the robotic
device drives the motion and no participation from the
patient is necessary. However when active participation from
the patient is needed, the robotic rehabilitator must have
an indication of the intention of motion of the patient.
Furthermore, this intention of motion must be calculated
and communicated to the robot in real-time, so as to allow
the robotic arm to calculate trajectories along the intended
motion and to then assist the patient in executing them.

Several studies have been performed in calculating the
intention of motion from various biological signals, such as
Electromyography (EMG) [4], [5], [6], Electroencephalogra-
phy (EEG) [7], [8], or a combination of EMG and kinematics
[9]. However, all of these studies are subject-specific and
require training data for each patient. While this might
be sensible in some situations, it is not an option when
performing rehabilitation in patients where there is e.g.
muscle activation that does not produce motion, as there is
no way to generate the motion training data.

To alleviate this hindrance, we are presenting a generic
intention of motion model for predicting the upper arm
kinematics during rehabilitation tasks. The model is based
on simultaneous measurements of the EMG and kinematics
and is able to predict the intention of motion in real-time
with a variable prediction horizon. This model is trained
with data collected from five healthy volunteers performing
three different types of motion. The model could predict the
kinematics of volunteers that have not been used for training,
making it therefore possible for use with patients that are
unable to perform motions. Even if this prediction is not
fully representative of the actual intention of the patient, it
is likely to be a more suitable input for a robotic rehabilitator
than the predefined trajectories that are currently used.
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Fig. 1. The three types of motion performed by volunteers. On the top row
is the starting position, on the bottom the ending position. The first motion
was scapular anterior elevation/posterior depression (arm cross), the second
scapular anterior depression/posterior elevation (arm raise), while the third
was elbow extension/flexion (elbow flexion).

II. METHODS
A. Data acquisition

5 healthy volunteers (4 male, 1 female, average age 32.2,
range 24-39 years old) were recruited to participate in
developing and training the prediction models. The protocol
of this study was approved by the Ethics Committee of the
Technical University of Cluj-Napoca (no. 163/22.01.2020),
where the study took place. The participants were provided
with an informed consent form prior to the experiments, and
were asked to sign it at the beginning of the measurements.
All the aspects of this study were in accordance to the
principles of the Declaration of Helsinki. Each participant
was asked to perform three types of motion, promoting pro-
prioceptive neuromuscular facilitation (PNF) [10]: scapular
anterior elevation/posterior depression (arm cross), scapular
anterior depression/posterior elevation (arm raise), and elbow
extension/flexion (elbow flexion) (Figure 1). Each participant
performed each motion 10 times in a continuous manner for
each trial, for three trials in total. This was repeated for each
type of motion separately. The motions were performed at a
self-selected speed and range of motion.

During the motions, the kinematics of the upper arm
were captured using an Astra Pro depth camera (Orbbec,
Shenzhen, Guangdong, PRC) at 40 Hz. Using the Software
Developers Kit (SDK) provided by the manufacturer, we
extracted skeleton data representing the position of various
joint segments and joints in three dimensional space. The
arm kinematics were decomposed into joint angles using an
inverse kinematics calculation. Three joints were considered
at the level of the shoulder (Abduction/Adduction, Exten-
sion/Flexion, Internal/External rotation) and one at the level
of the elbow (Extension/Flexion).

For the muscle activation, we selected six muscles of the
upper arm (Anterior, Lateral, and Posterior deltoids, Biceps,
Triceps, and Brachioradialis) that are the major contributors
to the motions of the shoulder and elbow. The muscle acti-
vation of these muscles was measured simultaneously using
non-polarizable silver-silver chloride (Ag/AgCl) electrodes.
Two electrodes were attached on each muscle at appropriate
locations to avoid muscle innervation-zones [11]. The dif-
ferential voltage from each pair of electrodes was captured
using a NI-9205 module (National Instruments, Austin, TX)
at 20 kHz. The signals were further processed in LabVIEW
2017 (same developer) according to the literature [11] with
a band-pass (20-500 Hz) and a subsequent band-stop (45-55
Hz) filter. Finally the muscle activation was quantified using
the root mean square (RMS) of the filtered signal every 500
samples, producing values for muscle activation at 40 Hz.

The kinematics and muscle activation were captured in-
dependently, but using the same computer. A timestamp
was recorded for each signal, which was used during post-
processing for synchronising and aligning the signals.

B. Model structure, training, and validation

For predicting the intention of motion we constructed a
neural network model based on Long Short-Term Memory
(LSTM) layers [12]. This type of layer was selected because
of its applicability in multivariate time-series forecasting
[13], [14]. The structure of the network had 3 hidden layers,
with 20, 150, and 20 LSTM nodes respectively. The model
received as input a tensor of size 10 x 10 which represented
the ten input signals (six muscle activations and four joint
angles), each signal having 10 delay states (past values).
The output layer had 4 x n nodes, representing the four
output signals (joint angles) for n time steps (prediction
horizon) (see Figure 2). A sensitivity analysis was performed
to study the accuracy of the model for different lenghts of
the prediction horizon and using different amount of subjects
as training data (see Figure 3 and the related discussion).
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Fig. 2. Structure of a time-delay multivariate neural network. The input
layer has one node for each previous timestep (10) of each of the 10
variables (muscle activation and joint angles). The output layer has n
nodes for each of the 4 prediction variables (joint angles), representing
the prediction for the following n timesteps.



For training the model, we implemented a k-1 approach
for each type of motion. The data from four volunteers were
used to train the network, which was then used to predict
the kinematics of the fifth volunteer. The training set of
volunteers was then rotated and the model was retrained from
the beginning, using the remaining volunteer for validation.
We therefore performed five validations for each type of
motion using different training and validation sets. Each
training and validation was repeated 10 times, using random
initial weights, to remove potential biases in the results.

The metric used for the validation was the root mean
square error of a sequential prediction over the whole du-
ration of a trial. The prediction was first performed using
the first 10 samples for the next n samples, and was then
shifted by n samples each time until the end of the trial.
The overall root mean square error (RMSE) from beginning
until the end of the validation trial was quantified for all four
joint angles.

C. Sensitivity analysis

To demonstrate the accuracy of model under varying
lengths of the prediction horizon and different sizes of the
training datasets, we performed a sensitivity analysis, where
the model was trained as explained above for various values
of n (prediction steps) and m (number of subjects used for
training). The number of timesteps of the prediction horizon
n took a value from the set [10,20, 30, 40, 50, 60, 70, 80],
while the number of persons used for the training m took a
value from the set 1,2, 3, 4]. For each combination of n and
m, the models were trained 10 times, using random initial
weights, to remove potential biases in the results.

ITII. RESULTS

The results of the sensitivity analysis are presented in
Figure 3. Based on these results, the necessary number of
subjects used for training m can be determined for the
required prediction horizon (n) and prediction accuracy. As
expected, the accuracy of the model degrades with a longer
prediction horizon, and it increases with a larger number of
training subjects.

The specifications for our application dictated a prediction
accuracy of 0.12m, which allowed a prediction horizon of
n = 20 samples using 4 subjects for training. This prediction
horizon corresponded to 0.5 seconds, since the data had a
sampling rate of 40Hz. To demonstrate the performance of
the model under these conditions, we present a training and
validation trial in Figure 4 and Figure 5 respectively. The
summary statistics for the RMSE are presented in Figure 6
and Table I. The median RMSE for the training sets is 0.07,
0.07, and 0.03 m for each type of motions respectively, while
for the validation sets is 0.12, 0.11, and 0.09 m for each type
of motion respectively.

IV. DISCUSSION & CONCLUSION

In this study, we presented a methodology for predicting
accurately and repeateadly upper-extremity kinematics of
healthy volunteers, using a generic model based on an
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Fig. 3. Sensitivity of prediction accuracy on the number of predicted steps
(prediction horizon). The accuracy for the training (blue) and validation (red)
set is presented in a boxplot. Each boxplot is describing the distribution
of RMSE over the 10 iterations for all the subjects. The height of each
box represents the interquartile range, while the bottom and top end
of the whiskers represent the lowest and highest value still within 1.5
of interquartile ranges respectively. The horizontal line inside the box
represents the median. The dots represent measurements outside 1.5 of
interquartile range and are considered outliers.
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Fig. 4. Training trial, with measured (red) and predicted (blue) kinematics.
The kinematics of the hand for the X, Y, and Z coordinates are presented
over time
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Fig. 5. Validation trial, with measured (red) and predicted (blue) kine-
matics. The kinematics of the hand for the X, Y, and Z coordinates are
presented over time
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LSTM neural network. This is possible through simultaneous
measurement of muscle activation and kinematics, and the
model is able to predict future kinematics in real-time. It is
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Fig. 6. Summary of the RMSE values for each kind of motion (arm

cross, arm raise, elbow flex), and each validating volunteer. A boxplot is
representing the distribution of the training (blue) and validation (red) trials.

TABLE I
SUMMARY STATISTICS OF THE RMSE VALUES FOR EACH KIND OF
MOTION AND VALIDATING VOLUNTEER. ALL VALUES ARE IN METERS.

RMSE

min max  median std

Kind Type
arm_cross Training 0.047 0.113 0.073  0.013
Validation ~ 0.099  0.158 0.123  0.012
arm_raise Training 0.063  0.106 0.073  0.008
Validation  0.095  0.182 0.112  0.018
elbow_flex  Training 0.031  0.055 0.036  0.004
Validation  0.079  0.161 0.094 0.018

therefore fitting to be used in robotic rehabilitation studies
that need to provide ‘“assistance-as-needed”. A sensitivity
analysis is presented for defining the necessary number
of training subjects for the desired prediction horizon and
prediction accuracy.

The accuracy of the model for the selected prediction
horizon is less than 0.1m for most types of motion, which is
deemed sufficient for our specific application. The accuraccy
of the prediction for the “arm raise” and the “arm cross” type
of movement is considerably lower than that of the “elbow
flex” motion. This is probably due to the higher complexity
of the motions, involving a larger range of motion for all four
joints of the arm. However, if higher accuracy is necessary
for some types of motion, this can be achieved either by

decreasing the horizon of the prediction, or by including
more training data. Ideally, the model should be trained
with a more extensive population, on a wider age range,
higher gender balance, and possibly different anthropometric
characteristics.

The model has only been tested in a healthy population,
however the intention is to use this model in patients thare are
in need of rehabilitation. This will be possible with patients
that do have muscle activation but are not necessarily able to
produce any motion without assistance. Since we are able to
accurately predict the intention of subjects that have not been
involved in the training of the model, we expect this model
will be able to calculate the intention of such patients. If
this intention is used as input for a robotic rehabilitator, it is
expected to perform a motion that describes more accurately
the actual intention of the patient than a predefined trajectory,
which is what is currently used in clinical setups.
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