

ROS-based Toolbox for Motor Parameter Identification of Robotic Manipulators

I.Ulici, A. Codrean, T. Natsakis

Automation Dept., Technical University of Cluj-Napoca

6th IFAC Conference on Intelligent Control and Automation Sciences 13-15 July 2022, Cluj-Napoca, Romania

Contents

- 1. Introduction
- 2. System model
- 3. Methodology
- 4. Results and discussion
- 5. Software implementation aspects
- 6. Summary

Premise of study

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Premise of study

Introduction

- System model
- Methodology Identification procedure
- Results and discussion
- Software implementation aspects
- Summary

- Complexity vs utility
- Availability of parameters

Premise of study

Introduction

- System model
- Methodology Identification procedure
- Results and discussion
- Software implementation aspects
- Summary

- Complexity vs utility
- Availability of parameters
- Physical systems discrepancies

Objectives

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

Identify torque-current and friction coefficients in robot manipulators

Objectives

Introduction

- System model
- Methodology Identification procedure
- Results and discussion
- Software implementation aspects
- Summary

- Identify torque-current and friction coefficients in robot manipulators
- Open-source toolbox of the procedure

General Dynamic Model

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

General Dynamic Model

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

Standard Denavit-Hartenberg kinematic convention [1]General dynamic model of robot manipulator [2]

$$\tau_m - \tau_{ext} - \tau_{dist} - \tau_f = M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q)$$
 (2.1)

where $q = [q_1, q_2, q_3, ...q_n]^T$ are joint positions and \dot{q} and \ddot{q} are joint velocities and accelerations respectively, while τ are forces/moments of the robot.

Case study on the UR5 (Universal Robots, Odense, Denmark)

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Figure 2.1: Installed UR5

Figure 2.2: Schematic of the UR5

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

$$\tau_m = k_{ct} i \tag{2.2}$$

Friction model [4]

$$\tau_f = k_{fc} sign(\dot{q}) + k_{fv} \dot{q}$$
(2.3)

where $i = [i_1, ... i_n]^T$ represent joint currents.

	r		۲				\sim		r	
l		s,		0	u	u	G	 v		1

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Introduction

System model

- Methodology Identification procedure
- Results and discussion
- Software implementation aspects
- Summary

- Constant velocity, no acceleration influence
- No end-effector applied forces during experiments

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

- Constant velocity, no acceleration influence
- No end-effector applied forces during experiments
- No disturbances during experiments

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

- Constant velocity, no acceleration influence
- No end-effector applied forces during experiments
- No disturbances during experiments
- One joint at a time, minimal joint cross-correlation

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

$$k_{ct}i = C(q, \dot{q})\dot{q} + G(q) + k_{fc}sign(\dot{q}) + k_{fv}\dot{q}$$
 (2.4)

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

Model used in identification process

green - constant values in one experiment

pink - coefficients to find by fitting

$$k_{ct}i = C(q, \dot{q}) \dot{q} + G(q) + k_{fc}sign(\dot{q}) + k_{fv} \dot{q}$$

$$(2.5)$$

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

Model used in identification process

green - constant values in one experiment

$$k_{ct} i = C(q, \dot{q})\dot{q} + G(q) + \underbrace{k_{fc}sign(\dot{q}) + k_{fv}\dot{q}}_{\tau_f}$$
(2.6)

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

UNIVERSITATEA TENNICĂ

(2.7)

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Figure 2.3: UR5 schematic

Identification procedure

- Introduction System model
- Methodology
- Identification procedure
- Results and discussion
- Software implementation aspects
- Summary

- 1 The identification of torque-current coeffcient k_{ct} and the total friction torque τ_f
- 2 The identification of viscous k_{fv} and Coulomb friction parameters k_{fc}
- 3 The analysis of all acquired data to find a triplet (k_{ct} ; k_{fv} ; k_{fc}) as the conclusive parameters for each joint.

Identification procedure

Introduction System model Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

1 The identification of torque-current coefficient k_{ct} and the total friction torque τ_f

1

Identification procedure

Introduction System model Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

The identification of torque-current coefficient k_{ct} and the total friction torque τ_f (*m* being the measurement and *n* the timestep)

Figure 3.1: Sample of current fitting

Identification procedure

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

2 The identification of Coulomb k_{fc} and viscous k_{fv} friction parameters

$$\tau_f = \frac{k_{fc}}{sign(\dot{q}_m)} + \frac{k_{fv}}{k_{fv}}\dot{q}_m \tag{3.2}$$

Identification procedure

- Introduction System model
- Methodology Identification procedure
- Results and discussion
- Software implementation aspects
- Summary

3 The processing of all acquired data to find a triplet $(k_{ct}; k_{fv}; k_{fc})$ as the conclusive parameters for each joint. The k_{ct} set found has to be averaged for each velocity in order to apply the fitting for the friction coefficients.

Torque-current coefficient

Introduction System model Methodology

Identification procedure

Results and discussion

Software implementation aspects

Summary

Figure 4.1: The current-torque coefficient (k_{ct}) comparison for the 2nd and 3rd joint

Figure 4.2: The current-torque coefficient (kct) comparison for the last 3 joints

ROS-based Toolbox for Motor Parameter Identification of Robotic Manipulators

Total friction term

- Introduction
- System model
- Methodology Identification procedure

Results and discussion

- Software implementation aspects
- Summary

Figure 4.4: The friction term (τ_f) comparison for the last 3 joints ROS-based Toolbox for Motor Parameter Identification of Robotic Manipulators

Interpretation of results

Introduction

System model

Methodology Identification procedure

Results and discussion

Software implementation aspects

Summary

Table 1: Final values for the identified torque-current k_{ct} , viscous k_{fv} , and Coulomb k_{fc} coefficients

Joint	k_{ct}	k_{fv}	k_{fc}
1	12.3	8.1272	12.3141
2	12.6351	7.7891	11.881
3	12.0383	6.9762	10.7667
4	7.7366	2.4405	1.8286
5	7.9228	2.6265	1.2794
6	7.4723	3.6058	0.8921

Interpretation of results

Introduction System model Methodology Identification procedure **Results and** discussion Software Low variability implementation aspects for each Summarv separate joint

Table 1: Final values for the identified torque-current k_{ct} , viscous k_{fv} , and Coulomb k_{fc} coefficients

Joint	k_{ct}	k_{fv}	k_{fc}
1	12.3	8.1272	12.3141
2	12.6351	7.7891	11.881
3	12.0383	6.9762	10.7667
4	7.7366	2.4405	1.8286
5	7.9228	2.6265	1.2794
6	7.4723	3.6058	0.8921

Interpretation of results

Introduction System model Methodology Identification procedure **Results and** discussion Software Low variability implementation aspects for each Summarv separate joint Particularity of 2 each joint

Table 1: Final values for the identified torque-current k_{ct} , viscous k_{fv} , and Coulomb k_{fc} coefficients

Joint	k_{ct}	k_{fv}	k_{fc}
1	12.3	8.1272	12.3141
2	12.6351	7.7891	11.881
3	12.0383	6.9762	10.7667
4	7.7366	2.4405	1.8286
5	7.9228	2.6265	1.2794
6	7.4723	3.6058	0.8921

ROS framework

Introduction	
System model	
Methodology Identification procedure	
Results and discussion	Example Movie
Software implementation aspects	
Summary	00:00
	*found at https://gitlab.utcluj.ro/true-rehab/robot-identification

The open-source toolbox

- Introduction
- System model
- Methodology Identification procedure
- Results and discussion

Software implementation aspects

Summary

Figure 5.1: Results of the identification

*found at https://gitlab.utcluj.ro/true-rehab/robot-identification

ROS-based Toolbox for Motor Parameter Identification of Robotic Manipulators

- Introduction
- System model
- Methodology Identification procedure
- Results and discussion
- Software implementation aspects
- Summary

- Higher accuracy in simulations and analysis
- Helpful in model-based control
- Simple enough to easily be implemented by other parties, complex enough to catch main features

References I

- Introduction
- System model
- Methodology Identification procedure
- Results and discussion
- Software implementation aspects
- Summary

[1] Universal Robots site,

https://www.universal-robots.com/articles/ur/application-installation/dhparameters-for-calculations-of-kinematics-and-dynamics [2] "Robot Manipulator Control", F. L. Lewis, D. M. Dawson, and C. Abdallah, 2003

[3] "Calibration of drive chain of robot joints", P.P. Restrepo and M. Gautier, International Conference on Control Applications, 1995
[4] "A survey and comparison of several friction force models, for dynamic analysis of multibody mechanical systems", F. Marques, P. Flores, J. C. P. Claro and H. M. Lankarani, Nonlinear Dynamics, volume 86, 1407-1443, 2016

ROS-based Toolbox for Motor Parameter Identification of Robotic Manipulators

This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2019-1975, within PNCDI III.

I.Ulici, A. Codrean, T. Natsakis