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Abstract: For many applications, a precise knowledge of the model of the robot is necessary
for accurate and stable control. However, it is not always feasible or desirable to perform from
scratch an in-depth study of the robot model, especially if it is not an element of concern
for the respective application. In this article we present a methodology for identifying motor
parameters of a robotic manipulator. We discuss the mathematical model and introduce an
extensible toolbox with velocity-control based methodology for a fast identification of individual
motor parameters. The results show that we can identify individual parameters even for joints
that are commercialised as of the same type.
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1. INTRODUCTION

Robotic manipulators are widely adopted in the automa-
tion of industrial production. They are able to perform
in harsh conditions, or in repetitive, tedious work that
would otherwise hinder resources and raise costs. Technical
innovations allow expansive influence of robots in other
territories, with service robotics, medical devices, agricul-
ture, and logistics actively being developed [K.I.Goryanina
et al., 2018]. Many of their use-cases require knowledge of
the robot model, either to efficiently perform simulations
before employing the real manipulator or for the develop-
ment of model-based control.

Modelling of physical systems for control purposes is re-
quired to capture the main features of the system, while
being mathematically tractable [Garulli et al., 2009]. To
derive the model of a robotic manipulator we need the
inertial parameters (such as mass and moments of inertia),
and the parameters of the motors (friction, motor dynam-
ics etc.). While mass parameters are often provided by
the manufacturer, there is usually little to no information
on the parameters of the motors of the robot. Assuming a
rigid connection, these consist mainly of the torque-current
characteristic of the motors and the friction coefficients
between the elements of the joints.

The friction description depends on several characteristics:
the geometry and roughness of contact surface, materials
used, type of lubricant, velocity, humidity, temperature,
wear, etc [Andersson et al., 2007]. Many friction models
have been proposed in order to effectively define the
friction dynamics, from the most common Coulomb model,
to the addition of Stribeck function, to more complex state
dependent models like Dahl, LuGre models [van Geffen,
2009].

A more detailed friction representation will add complex
nonlinearities in the overall dynamic model. This could
lead to a lengthier process in both the design and in the

actual runtime of the simulation, offering a higher model
accuracy while taking away time that could be used for
application architecture and experiments. Concurrently,
any model-based controller would have a more convoluted
configuration.

One of the defining characteristics of a motor is the torque-
current coefficient. It is specific to the motor’s design,
including its magnetic strength, number of wire turns,
armature length etc. The relation between current and
torque is different, depending on whether the motor is a
DC or an AC one, and can introduce several additional
nonlinearities in the model.

The robot’s full dynamic model incorporates the motor’s
aspects presented above. The motor can have other dy-
namics of its own, but a simplification may prove ac-
ceptable if the robot control is robust, be it the default
implemented controllers of the robot itself or a newly
designed one.

The kinetic and behavioural aspects of a robotic manip-
ulator are expressed in the dynamic model, which relates
joint torques to the robot motion. This model can vary
in complexity, depending on the purpose it is used for.
Identification of the dynamic parameters of the model can
be approached from multiple angles [Madsen et al., 2020]:

• Disassembly of each link and joint in order to directly
evaluate mass, moments of inertia, joint friction etc.
However this process is a tedious one, with time
consumed for the manual operations, and it needs
reiteration if any hardware changes occur.

• Computer Aided Design (CAD) allows the dynamic
parameters of each link to be found using nominal
geometric and material characteristics. Nonetheless,
the CAD parts may not be identical to the physical
correspondents and thus the accuracy of the parame-
ters is decreased. Furthermore, the motor parameters
are not available.



• System identification strategies, which analyse the
input-output behaviour of the robot, are preferred
due to their flexibility, reliability, and availability.

Various models are implemented in literature, using the
Lagrangian, Newton-Euler or Kane formulations as a
starting point [Sciavicco et al., 1995, Jubien et al., 2014,
Ni et al., 2019, Madsen, 2020] . From that, several other
additions may be introduced, for a more accurate model:
taking into consideration the flexibility of the joints [Mad-
sen et al., 2020, Madsen, 2020, Zollo et al., 2014], selecting
an appropriate friction model [Khan et al., 2016, Madsen,
2020], adding action of external forces, modelling distur-
bances, favoring the nonlinear motor torque coefficient
over an approximation and other similar decisions.

This article presents the methodology used for a fast and
accessible identification of torque-current and friction coef-
ficients in a set of motors. We derived a simplified dynamic
model that can be generalised to other types of robotic
manipulators, and implemented an identification toolbox
that can be used out-of-the-box. For the purpose of demon-
strating and assessing the identification of motor parame-
ters under simplification hypotheses, we conducted exper-
iments on a UR5 (Universal Robots, Odense, Denmark).
The UR5 robotic arm belongs to a family of collaborative
robots with great flexibility, designed specifically for safe
operation near humans. This specific robotic manipulator
accommodates integrated strain wave gearboxes, brushless
AC permanent magnet synchronous motors (PMSM), po-
sition sensors, and brakes.

The article is structured as following: Section 2 expands on
the mathematical equations of the UR5, discussing some
modelling variations, while section 3 explains the method-
ology reasoning and implementation of the identification
process. The experiments’ results are provided in section
4. Finally, section 5 discusses the implications and validity
of the experiments and the accessibility of the method
compared to other approaches.

2. MATHEMATICAL MODEL

The UR5 robot is a six degree of freedom robot with
six revolute joints, each with a range of (−2π, 2π) with
velocities up to π rad/s. Fig. 1 displays the physical
depiction of the robot.

Fig. 1. The UR5 robot. The blue straws represent the
positive direction of the axes of rotation of the joints.

The joint coordinates are defined as q, where q =
[q1, q2, q3, q4, q5, q6]T , and qi represents the angle value cor-

responding to the i-th joint. Likewise, the joints velocities,
accelerations and torques are defined as vectors q̇, q̈, τ .

The forward kinematics allow computation of the pose of
a robot’s end-effector, given the state of the joints. The
UR5 kinematic model is constructed using the standard
Denavit-Hartenberg parameters [Denavit and Hartenberg,
1955, 1965] already provided by the manufacturer, sum-
marized in table 1. Using this convention, each link has
four parameters assigned to it, depending on its own and
subsequent frames of coordinates: link length r, link rota-
tion angle α, joint angle θ and link offset d.

Table 1. D-H parameters for the UR5

Link θi [rad] di[m] ri[m] αi[rad]

1 q1 0.1519 0 π/2
2 q2 0 -0.425 0
3 q3 0 -0.39225 0
4 q4 0.10915 0 π/2
5 q5 0.09465 0 -π/2
6 q6 0.0823 0 0

Table 2. Mass properties of the UR5

Link Mass[kg] Center of Mass Position[m]

1 3.7 [0,-0.02561, 0.00193]
2 8.393 [0.2125, 0, 0.11336]
3 2.33 [0.15, 0, 0.0265]
4 1.219 [0, -0.0018, 0.01634]
5 1.219 [0, 0.0018, 0.01634]
6 0.1879 [0, 0, -0.001159]

The dynamic model takes into consideration the forces
and torques acting on the robot, as well as the kinetic
properties of the manipulator (mass, moments of inertia,
center of masses, joint elasticity, friction, etc). The mass
properties of the UR5 are collected in table 2, as declared
by the manufacturer. Each of the robots in the UR series
have these parameters available. Moreover, the user of
the identification toolbox has the freedom to edit them
corresponding to their own robot.

In order to discuss the dynamic modelling and its sim-
plification, we formulate a general system of equations as
such:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τm − τext − τdist − τf (1)

where M is the inertia matrix, C the matrix of centrifugal
and Coriolis forces, G the vector of gravitational torque
or force. The right side of the equation is composed of the
motor torque τm, external torques τext, a disturbance term
τdist and the friction torques τf that act on the joint.

The dynamics involved in the joints are portrayed in (1)
and depend on position, velocity, and acceleration. The
experiment has been thought to not have any external
forces acting on the robot, in order to simplify the work-
flow. The disturbances will not be modelled, based on the
assumption that the experiment’s movements are simple
and isolated, and that the identification process will issue
generally valid parameters.

In the case of DC motors, the torque-current characteristic
is proportional:



τm = kcti (2)

where i represents the currents sent to the motors.

That is not the case with AC motors, where the torque
current characteristic is nonlinear and difficult to model
[Rusnicki et al., 2015, Restrepo and Gautier, 1995]. How-
ever, Restrepo and Gautier [1995] showed that kct can be
approximated with two methods: taking mean or median
value of the ratio Em/ ˙qm - where Em and ˙qm are the am-
plitude of sinusoidal emf (DC electromotive force voltage)
between 2 phases, respectively the rotor velocity; or using
an equivalent DC motor methodology to represent the AC
configuration. Both cases allow the treatment of kct as
a constant. In order to have variables that are easy to
measure and as few as possible in the robotic model, the
function of the motor torque will therefore be a linear one
as in (2).

Joint friction is another nonlinearity that has been dis-
cussed in literature and proved to have an acceptable
simplification for robotics application consisting of only
the Coulomb and viscous friction [F.Marques et al., 2016],
that is

τf = kfcsign(q̇) + kfv q̇, (3)

where the sign function is defined as

sign(x) =

{
+1, x > 0
−1, x < 0

(4)

Putting together (1), (2), (3), and taking into consider-
ation aforementioned simplifications, the general relation
used to describe the dynamics becomes:

kcti = kfcsign(q̇) + kfv q̇ +M(q)q̈ + C(q, q̇)q̇ +G(q) (5)

The identification process will use this robot model for the
parameter analysis.

3. PARAMETER IDENTIFICATION EXPERIMENT
AND METHODOLOGY

3.1 Model used for the identification

Parameter identification has been generally approached by
computing a set of base parameters as a linear combination
of dynamic coefficients, employing search algorithms from
least square method [Atkenson et al., 1986] to genetic
algorithms, artificial bee colony algorithms [Ding et al.,
2015], weighted maximum likelihood estimation [J.Swevers
et al., 2007] and other methods that use a regressor matrix.
These methods would demand experiments with a specific
optimised trajectory [Swevers et al., 1997] that also has to
be calculated according to the base parameters.

To reduce the time consumed on experiments and the
identification process, the identification algorithm searches
just for the torque-current(kct) and friction(kfc, kfv) coef-
ficients, considering the other parameters (mass, inertia)
known from the manufacturer specifications. Furthermore,
the experiments will consist of trajectories of constant
velocities, thus eliminating a degree of variability with the
joint acceleration term. This feature changes (5) into:

kcti = kfcsign(q̇) + kfv q̇ + C(q, q̇)q̇ +G(q) (6)

The gravity term G is computed automatically depend-
ing on the state and mass properties of the robot, using
the Recursive Newton Euler Algorithm [J.Y.S.Luh et al.,
1980] without taking acceleration terms into account. The
centrifugal matrix C is derivated from the Euler-Lagrange
formulation of the dynamic model [Spong and Vidyasagar,
2006]. G and Cq̇ are computed with regards to all the
joints’ measured position and velocity, ending up being
column vectors. However, since each motor undergoes the
identification procedure separately, only the element cor-
responding to that joint will be taken into consideration.

We performed measurements of current, position, and ve-
locity for each joint independently to identify and analyse
the torque-current(kct) and friction(kfc, kfv) parameters,
based on (6). This takes into account the individuality
of each of the joints’ parameters, but can also serve as
a valid comparison between different joints of the same
type. The procedure allows for fewer cross-correlated joint
disturbances in the measurements. Fig. 2 depicts a sample
measurement.

Fig. 2. Sample measurement of a joint moving under con-
stant velocity. The position (red), velocity (yellow),
and current (blue) are visible for the duration of the
measurement

Considering a movement of constant q̇, (6) can be written
in terms of the measured current for each joint:

ij =
kfcjsign(q̇j) + kfvj q̇j +Gj(q) + Cj,j(q, q̇)q̇j

kctj
(7)

with j = {1, .., 6}. Current ij , positions q, and velocities q̇
are all varying with time.

3.2 Experiment preparations

Some details need attention in order for the identification
algorithm to properly work. The mounting of the robot
influences the gravity forces that act on it. In our case
the robot was mounted with the axis of rotation of the
first joint parallel to the gravitational field, the gravity
term for that joint was therefore zero. This makes (6)
redundant, and we cannot identify kct, kfv and kfc at the
same time. We choose therefore to use a predefined value
for the torque-current coefficient (e.g. approximated from
the other two joints of the same type), so the search would
be run only for the friction coefficients.



To avoid having a zero gravity term for the last joint
as well, we attached a mass off the axis of rotation of
joint 6. To have more uniform and accurate results, we
attached the same mass to the robot while performing the
identification on the smaller joints (4th, 5th and 6th). A
photo of the added mass can be seen in Fig. 3.

Fig. 3. Added mass off the axis of rotation, used for the
identification of joint 4, 5, and 6

3.3 Identification procedure

For each joint, the parameter identification consists of
three stages:

(1) The identification of torque-current coefficient kct and
the total friction torque τf

(2) The identification of viscous kfv and Coulomb friction
parameters kfc

(3) The analysis of all acquired data to find a triple
(kct, kfv, kfc) as the conclusive parameters for each
joint.

For a single joint, the data from one experiment can be
written in the next matriceal form:


im1

im2

...
imn

 =


sign(q̇m) q̇m G(q1) + C(q1, q̇m)q̇m
sign(q̇m) q̇m G(q2) + C(q2, q̇m)q̇m

...
...

...
sign(q̇m) q̇m G(qn) + C(qn, q̇m)q̇m

·
[
kfc/kct
kfv/kct
1/kct

]

(8)

imn, qn correspond to the nth timestep from measurement
m, while qm is the velocity used for the respective mea-
surement.

The system does not have a solution because the matrix
from (8) does not have full rank. This comes as a conse-
quence of the first two columns that are linearly depen-
dent, having the same values all through, since velocity
qm is fixed.

To overcome this, we combine the friction terms into
τf = kfc · sign(q̇m) + kfv q̇m, obtaining:

imn = τf +
Gmn + Cmnq̇m

kct
(9)

for which a solution can be found.

The first stage (identification of kct and τf ) is executed
on iterations of the same velocity, using the Nelder-Mead
minimization [Nelder and Mead, 1965] for the fitting of the
current.

The second stage (identification of kfv and kfc) takes
the pairs of q̇ and τf from all measurements of different
velocities and uses (8) for a new fitting.

Fig. 4 presents the fitting results respective to the measure-
ment from Fig. 2 as a comparison between the measured
and estimated current, with parameters kct = 12.0167 and
τf = −7.3853.

Fig. 4. Sample of current fitting

3.4 Software implementation aspects

The software package that aids in the identification process
is making use of both the Robot Operating System (ROS)
utilities [Stanford Artificial Intelligence Laboratory et al.,
2018] and an analysis tool of preference between [MAT-
LAB, 2020] and Python [Rossum and F.L.Drake, 2009].

ROS is an open-source framework designed for robot
software applications. The robotic arms from the Universal
Robots company benefit from community support and
an already implemented ROS driver. While connected to
ROS, the UR5 can perform different pre-defined tasks,
coded specifically for the identification workflow, and
provide enough real-time data to be later investigated and
interpreted.

We used two controllers from the Universal robots ROS
driver, provided by Universal Robots: a trajectory position
controller, that is used to position the robot in the initial
state before a measurement, and the joint group velocity
controller that is used to perform the motions for the
identification process. Initial joint positions, distance of
travel, velocities, and number of iterations are all read from
an input file that the user fills in with desired values prior
to a round of experiments.

For the identification process, the user may choose between
the provided MATLAB and Python applications, depend-
ing on their own setup and experience. It can easily be con-
ducted using the provided application and its documenta-
tion, found at [https://gitlab.utcluj.ro/true-rehab/robot-
identification]. The measurements are employed from ROS
and are automatically collected in bag files once the ex-
periment starts. The user then has to import those files in



the identification toolbox and select the type of robot he
is working with, after which the identification process is
commenced.

4. RESULTS

The first identification stage from the experiments deliv-
ered results concerning the torque-current constant kct.
Fig. 5 and 6 present the characteristic of the torque-current
relationship with respect to velocity, grouped by type of
motor. By reasons of safety, the second and third joint
were analysed in the (-1,1)[rad/s] range.

Fig. 5. Joint 2, joint 3 torque-current coefficient com-
parison. Each box expands between the 1st and 3rd
quartile of the torque-current coefficient for a specific
velocity. An additional line is positioned at the me-
dian. The whiskers show the data below and above
the 1st and 3rd quartile respectively.

Fig. 6. Boxplots summarising the torque-current coeffi-
cients for joint 4, joint 5, and joint 6

The friction coefficients, kfv and kfc have been found by
first taking the means of the torque-current coefficient for
each velocity and then using those values in a second
fitting stage. A batch of measurements for the friction
identification consists of one measurement for each velocity
in the chosen range. Fig. 7 and 8 show the distribution of
the friction coefficients. For each joint an average is made
to use in the model.

The resulting coefficients are presented in table 3. The kfc
and kfv values are uniquely determined for each joint in
the second stage, while the kct final value is obtained by
averaging the coefficients found for all the velocities.

Fig. 7. Friction term comparison for joint 1, 2 and 3. While
the dotted points represent the calculated full friction
term τf from the first step of the identification with
regards to velocity, the lines are drawn using (3) with
the kfv and kfc that were identified.

Fig. 8. Friction term comparison for joint 4, 5 and 6

Table 3. Final results for the torque-curent,
viscous and Coulomb coefficients

Joint kct kfv kfc

1 12.3 8.1272 12.3141
2 12.6351 7.7891 11.881
3 12.0383 6.9762 10.7667
4 7.7366 2.4405 1.8286
5 7.9228 2.6265 1.2794
6 7.4723 3.6058 0.8921

5. DISCUSSION

Fig. 5 and 6 show that for each velocity used in the
experiments, the torque-current values resulting from dif-
ferent measurements exhibit low variability for each joint.
However joints of the same type present a difference in
the mean of the coefficient, which may further affect the
identification of friction coefficients and ultimately the
parity between the model and the real robot. The final
values of kct, kfv and kfc indicate the particularity of each
joint, even if the first three and the last three adhere to the
same type of motor. This highlights further the need for



a joint-by-joint identification both for the torque-current
and friction coefficients.

The friction model we used in the identification adopted
only the viscous and Coulomb friction terms expressed
in relation (3), without other nonlinear characteristics.
This implies the existence of a slope proportional to
the joint velocity and an offset conditioned by the sign
of the same velocity. However, the system is in fact a
flexible joint manipulator robot, with the joint torques
and friction depending on both the link and rotor angular
positions. Furthermore, more complete friction models of
robot joints have been described in literature [Andersson
et al., 2007], [F.Marques et al., 2016]. Nevertheless, our
results indicate that the simple friction formulation can
capture most of the system’s behaviour. The additional
accuracy that would come from modelling the joints as
flexible ones would also imply the cost of twice the number
of generalized coordinates [Madsen, 2020], hence a more
complicated identification process. Furthermore, the direct
assessment of rotor positions may not be available or would
require heavy preparation.

Determination of joint-specific motor parameters may in-
crease accuracy in simulations and behaviour analysis of
the system, but it could also help in model-based control
design for specific manipulator robots. The simple and
precise model that results from our proposed identification
methodology can cut back on time and resources in first
stages of robot application implementation, allowing users
to focus on the target application.
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