
Laboratory 4

Determination of an inverse geometric
model

In the previous works we analysed the problem of calculating the position and orienta-
tion of a Cartesian system attached on the end-effector, when the robot coordinates of each
joint of the robot is known. This exercise proposes an approach a bit more difficult: we
want to determine the joint coordinates for a specific position of the end-effector. In other
words, determine a set of coordinates of the robot q1, q2, ..., qn, that ensure a specific posi-
tion and orientation of the end-effector. This problem is known as the inverse geometric
model of a kinematic chain. The principal objective of this exercise is the description of
a heuristic method for determining this inverse geometric model of a robotic arm and to
apply this method in two robotic kinematic structures.

4.1 Theoretical considerations
The problem of determining the inverse geometric model of a robot is a non-linear

problem. For a robotic structure, we are starting with the numerical values of the matrix
that describes the direct geometric model (0TN) and we aim at determining the set of
joint coordinates of the robot (q1, q2, ...qn). For a robot with 6 degrees of freedom (6
motor joints), we obtain a system with 12 equations and 6 unknowns. However, from
the 9 equations that result from the correspondence of the orientation from matrix T

6 ,
only three of them are independent and the other 6 are redundant. This limits us to the
determination of maximum 3 independent variables. If, on these three equations, we add
the three equations resulting from the correspondence of the position vectors from matrix
T
6 , we obtain a set of 6 independent equations that allow us to determine a maximum of
6 independent variables. These variables are corresponding to the 6 degrees of freedom of
the robot. This system of equations is non-linear and transcendent, often proving difficult
to solve. Like all non-linear systems of equations, the main problems are raised by the
existence of solutions, existence of multiple solutions and the method to use for solving the
system.

Considering a robot for which we denote as q = [q1, q2, ... qn]T the vector of coordinates
of the robot, and as Z = [PX , PY , PZ , φ, θ, ψ]T the vector of Cartesian coordinates of the
end-effector, the inverse geometric model (IGM) is represented by a system of equations
that construct the dependence q = f(Z). The inverse geometric model must

We need to determine the inverse geometric model since the trajectories of the robotic
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arm are described in Cartesian coordinates, while the robot is driven by the motor joints
and is therefore described in the joint coordinates. The inverse geometric model is deter-
mined based either on the direct geometric model, on heuristic methods (e.g. for simple
structures), on iterative methods (e.g. for more complicated structures), or on geometric
methods. It is possible to determine either the particular solution of a model or a general
method (analytic) solution thereof. Applying heuristic methods is convenient but does not
guarantee a unique solution. Thus, two people who use this method to solve the same
problem can reach a different solution (although equivalent).

Another problem with the determination of the IGM, is the redundancy of the manip-
ulator. A manipulator is said to be redundant when it is able to reach a specific position
and orientation under two or more different configurations of its kinematic chain. This
translates mathematically in two or more solutions of the IGM and is linked with the ap-
pearance of specific mathematical functions, such as the square root or the cosine, which
give usually two solutions: a negative and a positive one.

For example, in figure 4.1 we present a redundant manipulator with two degrees of
freedom, and two configurations of its kinematic chain that generate the same position of
its end-effector.

Figure 4.1: Redundant manipulator

The choice of one over the other solution depends on external restrictions and on the
construction elements of the robot. However, once a solution has been chosen, it should be
used with continued consistency to avoid unnecessary displacement of the robot between
the two configurations.

Heuristic method for determining the IGM

I. We equate the homogeneous transformation matrices of the manipulator (direct
geometric model) with the general homogeneous transformation matrix (relation
4.6).
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If we are seeking a specific position, the homogeneous transformation matrix of
the manipulator is equated with a matrix that describes this specific position.

II. We inspect both matrices, observing if:

a. there are elements that contain only one variable

b. there are pairs of elements that can produce expressions with a single
variable after a division. We especially use divisions that produce an
arctan function.

c. there are combinations of elements that can be simplified using trigono-
metric identities.

III. Once we select such an element, we equalise it with its correspondent from the
second matrix, and we solve the obtained equation.

IV. We repeat step III until we solve all equations that contain elements identified
in step II.

V. If we obtain redundant or unsatisfactory results, we try again starting from a
different equation, keeping the solution aside for later use. We prefer to obtain
solutions in function of the vector P = [PX , PY , PZ ]T and not in function
of the vectors X, Y or Z, since this imposes in general position only and not
orientation.

VI. If we cannot identify all the robot joint coordinates, we pre-multiply both
parts of the equation with the inverse transformation matrix of the first kine-
matic joint, obtaining a new set of equations. Alternatively we can try post-
multiplication of both parts of the equation with the transformation matrix of
the last kinematic joint.

VII. We repeat steps II - VI until we obtain all the solutions or until we exhaust all
the pre- or post-multiplication matrices.

VIII. If we cannot obtain a suitable solution for a variable, we can consider one of
the solutions obtained in step V.

IX. If we cannot obtain a solution for one of the variables, it means that the manipu-
lator cannot reach the respective position (it is outside of the space of operation
of the robot)

For example, for the manipulator with two degrees of freedom from figure 4.2 we can
write the direct geometric model as:
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Figure 4.2: Robot RR

T1 = Rot(Z, q1) =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 (4.1)

T2 = Trans(Z, l1) =


1 0 0 0
0 1 0 0
0 0 1 l1
0 0 0 1

 (4.2)

T3 = Rot(Y, q2) =


c2 0 s2 0
0 1 0 0
−s2 0 c2 0

0 0 0 1

 (4.3)

T4 = Trans(X, l2) =


1 0 0 l2
0 1 0 0
0 0 1 0
0 0 0 1

 (4.4)

resulting in a direct geometric model in form:

T = T1 · T2 · T3 · T4 =


c1 · c2 −s1 c1 · s2 c1 · c2 · l2
s1 · c2 c1 s1 · s2 s1 · c2 · l2
−s2 0 c2 l1 − l2 · s2

0 0 0 1

 (4.5)
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The determination of the inverse geometric model, assumes the equation of the direct
transformation matrix (T ) with the general matrix of a homogeneous transformation (Tg)
(see also relation 1.13):

T = Tg (4.6)


c1 · c2 −s1 c1 · s2 c1 · c2 · l2
s1 · c2 c1 s1 · s2 s1 · c2 · l2
−s2 0 c2 l1 − l2 · s2

0 0 0 1

 =


XX YX ZX PX
XY YY ZY PY
XZ YZ ZZ PZ
0 0 0 1

 (4.7)

For the determination of the joint coordinates vector of the robot q = [q1, q2]
T we

construct a system of equations: c1 · c2 · l2 = PX
s1 · c2 · l2 = PY
l1 − l2 · s2 = PZ

(4.8)

PY
PX

=
s1
c1

=⇒ q1 = arctan

(
PY
PX

)
(4.9)

For the determination of q2 we resort to the pre-multiplication of both parts of the
matrix equation (4.7) with the inverse of the transformation matrix of the first kinematic
joint (step VI), obtaining a new set of equations:

T−11 · T1 · T2 · T3 · T4 = T−11 · Tg (4.10)


c2 0 s2 c2 · l2
0 1 0 0
−s2 0 c2 l1 − l2 · s2

0 0 0 1

 =


XX · c1 +XY · s1 YX · c1 + YY · s1 ZX · c1 + ZY · s1 PX · c1 + PY · s1
XY · c1 −XX · s1 YY · c1 − YX · s1 ZY · c1 − ZX · s1 PY · c1 − PX · s1

XZ YZ ZZ PZ
0 0 0 1

 (4.11)

resulting in the system

{
c2 · l2 = PX · c1 + PY · s1
s2 · l2 = l1 − PZ

(4.12)

l1 − PZ
PX · c1 + PY · s1

=
s2
c2

=⇒ q2 = arctan

(
l1 − PZ

PX · c1 + PY · s1

)
(4.13)
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4.2 Proposed problems
1. We consider the robotic structure with 3 degrees of freedom from figure 4.3, for which

l1 = 0.5 m.
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Figure 4.3: Robot RRT

a) Determine the direct geometric model.

b) Determine the inverse geometric model.

2. We consider the robotic structure with 3 degrees of freedom from figure 4.4, for which
l1 = 0.5 m, l2 = l3 = 0.2 m.
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Figure 4.4: Robot TRR

a) Determine the direct geometric model using the DH convention.

b) Determine the inverse geometric model.
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c) Construct the robot’s model using the robotic toolbox.

d) Using the robotic toolbox, calculate the trajectory for the robot from pose A to
pose B. Then animate the trajectory.

A =


0 0 −1 0.1414
0 1 0 −0.3
1 0 0 0.8414
0 0 0 1

, B =


−1 0 0 0.4
0 1 0 0.2
0 0 −1 0.5
0 0 0 1


4.3 MATLAB toolbox
In the previous laboratory, we saw how to define link and how to combine them into a

robotic structure, using the Link and SerialLink commands. We also saw how to calculate
the end effector position and orientation using the fkine and how to visualise the robot
using the plot commands.

The toolbox has a lot of useful commands for solving the inverse kinematics model as
well. In the examples above, it is easy to calculate the inverse kinematics models by hand,
but for more complex robots, we need to solved it numerically. The toolbox can do this
using the ikine command (from inverse kinematics). The command works by providing a
desired end-effector pose (position and orientation) and gives back the joint coordinates
the result in the desired pose:

>> T = t r an s l ( 0 , 2 , 3 )∗ t r o tx (pi /2 ) ;
>> q = bot . i k i n e (T) ;

As we know, the inverse kinematics model might have more than just one solution for
a specific pose. The way numerical methods work, they start looking for a solution around
a specific set of joint coordinates, and slowly converge to the joint coordinates that result
in the desired pose. To assist the algorithm, we might want to provide an initial guess for
the joint coordinates.

>> q0 = [ 0 , 0 . 2 , 0 . 3 ] ;
>> q = bot . i k i n e (T, q0 ) ;

Unless our robot has at least six degrees of freedom, it will not be always able to obtain
the desired pose (why?). In that case, we need to specify which parts of the pose we
care about obtaining. We do this using a row vector M which has six element, each one
corresponding to a degree of freedom. The first three represent position (X,Y, and Z) and
the next three the orientation around X, Y and Z. To specify that we want a specific degree
of freedom to be matched, we add 1 in the respective position, otherwise we add 0. For
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example, if for a three degree of freedom robot we care about obtaining only position, but
orientation is irrelevant, we say that:

>> q0 = [ 0 , 0 . 2 , 0 . 3 ] ;
>> M = [1 1 1 0 0 0 ] ;
>> q = bot . i k i n e (T, q0 ,M) ;

We can solve the inverse kinematics model not just for a specific pose, but for a series
of different poses. If our variable containing the desired pose is an array of 4× 4×N , then
the ikine command will solve the inverse kinematics for N different poses. To generate a
series of poses starting from an initial pose T1 until a final pose T2, in e.g. 50 steps, we can
use the ctraj command:

>> T = c t r a j (T1 ,T2 , 5 0 )
>> q = bot . i k i n e (T, q0 ,M)

The result will be an array of N ×M , where M is the number of joint coordinates. We
can finally feed the result into the plot command to visualise the robot’s motion from pose
T1 until pose T2.

>> bot . plot (q , ’ workspace ’ , [ xmin xmax ymin ymax zmin zmax ] )


