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Agenda

Kinematics

e Basic principles of aerodynamics

How propellers work

e Dynamic modeling

Control
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Drone design and flight principles
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Grand scheme
The big picture

Forward Great robots
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Quadrotor drones
What is a quadrotor?
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Quadrotor drones
What is a quadrotor?

Why four rotors?
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Quadrotor

Systems of reference and degrees of freedom
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Quadrotor

Systems of reference and degrees of freedom

Ty
2, %
E xy
3
o

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems



Quadrotor

Systems of reference and degrees of freedom
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e 1,9,z translation along principal axes of the
earth frame
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Quadrotor

Systems of reference and degrees of freedom

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

e 1,9,z translation along principal axes of the
earth frame

e ¢, 0,1: rotation around principal axes of the
earth frame
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Quadrotor

Systems of reference and degrees of freedom
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e 1,9,z translation along principal axes of the
earth frame

e ¢,0,1: rotation around principal axes of the
earth frame

e u,v,w: velocity along principal axes of the drone
body frame @

Robot Control Systems



Quadrotor

Systems of reference and degrees of freedom

e 1,9,z translation along principal axes of the
earth frame

e ¢,0,1: rotation around principal axes of the
earth frame

e u,v,w: velocity along principal axes of the drone
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Quadrotor

Systems of reference and degrees of freedom

e 1,9,z translation along principal axes of the
earth frame

e ¢,0,1: rotation around principal axes of the
earth frame

e u,v,w: velocity along principal axes of the drone
body frame @

o
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Quadrotor

Systems of reference and degrees of freedom

e 1,9,z translation along principal axes of the
earth frame

e ¢,0,1: rotation around principal axes of the
earth frame

e u,v,w: velocity along principal axes of the drone

body frame @
1k ¢ e p,q,r: angular velocity around prlnC|pai éxes of
%y 0 the drone body frame \»\n; )
EN 5 Why velocities and not positions for the drone bqyiy
¢ frame? e
pP= [{,n]T, where: £ = [z, y, z]T and n = ¢, H,w]T x 3
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Quadrotor

Systems of reference and degrees of freedom

e 1,9,z translation along principal axes of the
earth frame

e ¢,0,1: rotation around principal axes of the
earth frame

e u,v,w: velocity along principal axes of the drone
body frame @

o
v ¢ e p,q,r: angular velocity around prlnC|pai éxes of
%«y 0 the drone body frame \»\1 )
E
* 5 Why velocities and not positions for the drone bqyiy
[ frame? b8
. T T AN
P=[¢n ]T, where: & = [z,y, 7] Tand n = ¢, H,w]T Y
V =[m,p]", where: m = [u,v,p|]” and p = [p,q,r] \
6
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Kinematics modeling

Transformation
RE(n) =

where:

CoCy)
CoCy)
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ChSOSp — CpSeh  SpSyp + CpCypSe
CHCop T S84 Sep  ChHSOSyy — CopS

Co 8¢ Co C¢
cp = cos(0) ‘;%5\"wy
sy = sin(1) g\\t J
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Kinematics modeling

Transformation
COCh CehSOSp — CpSehp  SpSyp + ChCypSe
RE(n) = COCy CHCyp + 50595y  CpSeSy — CySe

— S0 CoSo CoCy
where: _
co = cos(0) .Z;f{;\t::l > |
sy = sin(1) Q\\n

We can use this to convert velocities £ = RE(n)n &
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Kinematics modeling

Transformation
COCh CehSOSp — CpSehp  SpSyp + ChCypSe
RE(n) = COCy CHCyp + 50595y  CpSeSy — CySe

— S0 CoSo CoCy
where: _
co = cos(0) .Z;f{;\t::l > |
sy = sin(1) Q\\n

We can use this to convert velocities £ = RE(n)n &

Forward kinematics
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Kinematics modeling

Transformation
COCh CehSOSp — CpSehp  SpSyp + ChCypSe
RE(n) = COCy CHCyp + 50595y  CpSeSy — CySe

— S0 Co 8¢ Co C¢
where: ~
cp = cos(0) *‘ > U
sy = sin(y) C
We can use this to convert velocities £ = RE(n)n ’ i \\\l)
Forward kinematics N, \1

What about inverse kinematics?
/
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Aerodynamics
Thrust-Lift-Drag

Lift

Thrust
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Aerodynamics
Thrust-Lift-Drag

Lift

Thrust

Thrust, Lift and Drag are related to each other and to the design of the airfoil

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems




Aerodynamics
Angle of attack
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Aerodynamics
Angle of attack

The ratio of lift to drag are also related to the 'angle of attack’
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Aerodynamics

Propellers
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Aerodynamics

Propellers

A propeller is many airfoils with different angles of attack
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Quadrotor

Propeller forces and torques
Connecting with the aerodynamics of airfoils and propellers, each rotor produces a
lifting force (F;) and a torque (7).
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Quadrotor
Propeller forces and torques

Connecting with the aerodynamics of airfoils and propellers, each rotor produces a
lifting force (F;) and a torque (7).

Both of these have to do with the design of the propeller, and are proportional to the

square of the angular velocity of the propeller.
Fi = bwf

T = dw-2 &
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Quadrotor
Achieving flight
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Quadrotor
Achieving flight
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Quadrotor
Achieving flight in X configuration

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Robot Control Systems




Quadrotor
Achieving flight in X configuration
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i w1W1:WQZW3:w4
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Quadrotor
Achieving flight in X configuration
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i w1W1:WQZW3:w4

°* Plw) =Wy F w3 =wy
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Quadrotor
Achieving flight in X configuration
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® W :wl =Wy =wW3 =Wy
*Pplwl=wrF w3 =wy

® (iwl =wyF we=ws
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Quadrotor

Achieving flight in X configuration
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i QD:LU1:WQ:W3:LU4
°*Prwl =wy F Wz =wy
® (iwl =wyF we=ws

o 7
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Quadrotor

Achieving flight in X configuration
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°piuwi
°qiwr
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i QD:LU1:WQ:W3:LU4

Wy

w3

° 7w = w3 F Wy = wy




Quadrotor

Achieving flight in X configuration

® W :wl =Wy =wW3 =Wy
°*Prwl =wy F Wz =wy
® Wl =Wy F Wy = w3 ~
° 7w = w3 F Wy = wy e ®

.u:q
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Quadrotor
Achieving flight in X configuration
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® W :wl =Wy =wW3 =Wy
°* Prwl =wyF w3 =wy
® (iwl =wyF we=ws
° 7w = w3 F Wy = wy
° u:q'

./U:p
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Quadrotor
Achieving flight in plus configuration
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Quadrotor
Achieving flight in plus configuration

® W:wl =W = W3 =Wy
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Quadrotor
Achieving flight in plus configuration

® W:wl =W = W3 =Wy

° Plw =ws3,wWy F wy
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Quadrotor
Achieving flight in plus configuration

® W :wl =Wy =wWw3 = w4
* plwl = w3, wy F wy

° §:wp F W3, wr = wy
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Quadrotor

Achieving flight in plus configuration

® W :wl =Wy =wWw3 = w4
° Plwl = Ww3,w F Wy
° §:wp F W3, wr = wy

® 7w = w3 F W =wy
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Quadrotor

Achieving flight in plus configuration

® W :wl =Wy =wWw3 = w4
* Prlw = w3, we F Wy
® §:wy F w3,wr=wy
® 7w = w3 F W =wy

[ ] u:q
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Quadrotor
Achieving flight in plus configuration

® W :wl =Wy =wWw3 = w4
* Prlw = w3, we F Wy

® §:w F ws,wy =wy

® 7w = w3 F W =wy
° Ql=q

[ ] /U:p
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Quadrotor

Produced forces
The forces produced are calculated as follows:

Uy=F +Fy+ F3+ Fy4
U, = I(Fy — F)
U, = I(Fy — F3)

U=n1+73—T2— 7
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Quadrotor

Produced forces
The forces produced are calculated as follows:

Uy=F +Fy+ F3+ Fy4
U, = I(Fy — F)
U, = I(Fy — F3)

U=n1+73—T2— 7

Remember:

32
F; = bw;
7 = dw?
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Quadrotor

Produced forces
The forces produced are calculated as follows:

Uy=F +Fy+ F3+ Fy4
U, = I(Fy — F)
U, = I(Fy — F3)

U =11+m—T0—T

Remember:
7.2

F; = bw;

7 = dw?
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Quadrotor

Produced forces

For the cross configurations

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

Up=F+F+F+F
Up = ?l(Fl + Fy — F3 — F4)
Uq = @l(Fl + Fy — Fy — Fg) "

U =m1+13—T2—T4
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Dynamic modeling
The Lagrangian

Remember:

e x,y,z: translation along principal axes of the
earth frame

e ¢,0,1: rotation around principal axes of the
earth frame

e u,v,w: velocity along principal axes of the drone

4
N \

v . body frame 5 L
%y 9 e p,q,r: angular velocity around prmc?‘ba% axes of
EXX the drone body frame & 11 R

= [&,n]", where: € = [z,y,2]" and = [$,0,9]"
V =[m,p|", where: 7 = [u,v,p]" and p = [p,q,7]"
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Dynamic modeling
The Lagrangian

) 1, ...
L(P, P) = Ty, + Tang =V = ) <m€T§ + 7'7Tf(77)77> —mgz

Where I(n) is the moments of inertia expressed in the Earth frame.
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Dynamic modeling
The Lagrangian

: Ly ops :
L(P, P) = Tiin + Tang =V = 5 (mETE+0T1(n))) —mg=

Where I(n) is the moments of inertia expressed in the Earth frame.

By differenciating, we can calculate the equation of motion of the quadrotor
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Dynamic modeling
The Lagrangian

: Ly ops :
L(P, P) = Tiin + Tang =V = 5 (mETE+0T1(n))) —mg=

Where I(n) is the moments of inertia expressed in the Earth frame.
By differenciating, we can calculate the equation of motion of the quadrotor

doL oL _ Uy,
dtop 0P
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Dynamic modeling
The Lagrangian

Since the linear kinetic and potential energies depend only on & and £ and the angular
kinetic energy only on 7, we can break this down to two decoupled systems of

equations.
dt ag aé. lin |
d OTung 0Ty W
o = Uang &
dt on an VN
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Dynamic modeling
The Lagrangian

L(P,P) = % (mETE+ 0T 1()) —mg=

The first equation is easy to differenciate:
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Dynamic modeling
The Lagrangian

L(P,P) = % (mETE+ 0T 1()) —mg=

The first equation is easy to differenciate:

. 0
Ujim=méE+ | 0
mg
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Dynamic modeling
The Lagrangian

L(P,P) = % (mETE+ 0T 1()) —mg=

The first equation is easy to differenciate:

. 0
Ujim=méE+ | 0
mg

The second one is a bit more 'stiff’, due to the moments of inertia:
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Dynamic modeling
The Lagrangian

L(P,P) = % (mETE+ 0T 1()) —mg=

The first equation is easy to differenciate:

. 0
Uiin=m&+ | 0
mg

The second one is a bit more 'stiff’, due to the moments of inertia:

Unng = 100)i+ T0)7 = 5 45 (37 100)) = 10+ CCn i
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Dynamic modeling

The forces

If we consider a hover flight, with very small changes in orientation, we need to
consider a vertical force to achieve this:

0
Ulin = 0
Uy
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Dynamic modeling

The forces

If we consider a hover flight, with very small changes in orientation, we need to
consider a vertical force to achieve this:

0
Ulin = 0
Uw
We need to express this force on the Earth frame, therefore: g\f\n; %
0
_ pB
Uin=Rg | 0
Uw
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Dynamic modeling

The forces

If we do the multiplication between force and transformation matrix, we get:
COCyp  CpSPSp — ChpSep  SpSy T+ CHCypSh
COCh  CopCyp + S9S4Syy  CpSeSyy — CypSe

CoS¢

Tassos Natsakis tassos.natsakis@aut.utcluj.ro

CoCyp

T = [%Sw + c¢c¢39} =

Y= [C¢898¢ - Cwsd)} Uy

= —g + C¢CGW

Robot Control Systems

0
0
Uw

:mf—l— 0
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Dynamic modeling
The torques

Since we usually express rotations on the Earth frame, the angular forces (torques), do
not need to be 'transformed’ in the drone body frame. Therefore:

Us
Uang = U0
Uy @
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Dynamic modeling
The torques

Since we usually express rotations on the Earth frame, the angular forces (torques), do
not need to be 'transformed’ in the drone body frame. Therefore:

Us
Uang = | U | = I(n)ij + C(n, 1)1

Uy
 ’ Y \.i,vx’
Q\\L i
Y 7\\3)
v ] y
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Dynamic modeling
The torques

Since we usually express rotations on the Earth frame, the angular forces (torques), do
not need to be 'transformed’ in the drone body frame. Therefore:

Up
Uang = |Ug | = I(n)ij+ C(n,0)n

Uy @

& qu Q‘»:L
- \
0| =I"(n)| |Us| — Cn,i) Y
Y Uy "
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Dynamic modeling
The torques

Since we usually express rotations on the Earth frame, the angular forces (torques), do
not need to be 'transformed’ in the drone body frame. Therefore:

Up
Uang = |Ug | = I(n)ij+ C(n,0)n

Uy @
¢ Ug Ug v, &
0| =17 | |Us| — C(n, )77 | Where: |Up| = RE |U,| =~ &
(s Uy Uy U, 9N

24/
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Dynamic modeling
Putting it all together

And all together:

T = [C¢S@C¢ + S¢S¢} %
y= [%80% - 8¢C¢} 0 o
Z=—g+ C¢C@% ;
QE Up 50
6| =17 (n)| RE |Uy| — Cln, )1 o ey
v . "y
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Dynamic modeling
Simplifications
Since we consider the hovering motion, this means that the ¢ and 6 rotations are small

and very slow, therefore we have:
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Dynamic modeling
Simplifications
Since we consider the hovering motion, this means that the ¢ and 6 rotations are small
and very slow, therefore we have:
cos(a) = 1
sin(a) ~ «
00

The upward force, can be also expressed as U, = mg + AU,
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Dynamic modeling
Simplifications
Since we consider the hovering motion, this means that the ¢ and 6 rotations are small
and very slow, therefore we have:
cos(a) = 1
sin(a) ~ «
00

The upward force, can be also expressed as U, = mg + AU, Therefore, our equations

of motion become:

T = cyblg o= IclUp ,
= ~sy9 b el
. AUZ 0 - TUq ‘;\ ¥
= B

m

Robot Control Systems
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Quadrotor

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?
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Quadrotor

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?

e \We made several assumptions to end up with a linear model
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Quadrotor

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?
e \We made several assumptions to end up with a linear model

e We did not include motor dynamics
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Quadrotor

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?
e \We made several assumptions to end up with a linear model
e We did not include motor dynamics

e We did not include aerodynamics
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Quadrotor

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?
e \We made several assumptions to end up with a linear model
e We did not include motor dynamics
e We did not include aerodynamics

e When flying outdoors, there are huge disturbances (wind)
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Quadrotor

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?
e \We made several assumptions to end up with a linear model
e We did not include motor dynamics

e We did not include aerodynamics

When flying outdoors, there are huge disturbances (wind)

A quadrotor is underactuated
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Quadrotor

Control

If we can derive the dynamic model of a quadrotor, why do you think control is difficult?
e \We made several assumptions to end up with a linear model
e We did not include motor dynamics

e We did not include aerodynamics

When flying outdoors, there are huge disturbances (wind)

[

e A quadrotor is underactuated

€

For simple slow motions though, we can try to control it with this simple model I
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Quadrotor

Control

The model we have calculated is already linearized, so we can apply state feedback
control. Our states and inputs are:

s=ed]

w= [Uz,Uqb,Ug,Uw}T

The model can be writen in state space as: A
2 g
$= As+ Bu
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Quadrotor

State feedback

By calculating the matrices A and B, we can calculate a feedback gain matrix K, that
will stabilize the system. We do that using standard pole positioning. Our system has
12 states and 4 inputs, so the gain matrix will have dimensions 4 x 12:

u=—Ks
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Quadrotor

State feedback

By calculating the matrices A and B, we can calculate a feedback gain matrix K, that
will stabilize the system. We do that using standard pole positioning. Our system has
12 states and 4 inputs, so the gain matrix will have dimensions 4 x 12:

u=—Ks

We then add an integrator to track a specific setpoint, in our case a position in space:

u=—Ks+u, {
Uo = [uza Uy, Ugy 0] L;f\v; Q
where: < & ﬁ\
t t t Qi
Ug = ki [ (rp —x)dt,uy =kiy | (ry —y)dt,u, = k:zz/ (r, —z)dt
0 0 0
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Quadrotor

State feedback

\4
\

ifb@—b 1 K; > Quadrotor 5
s

stabilization

tracking
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Further reading/watching

Very cool TED talk on drone modeling:
https://www.youtube.com/watch?v=w2itwFJCgFQ
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https://www.youtube.com/watch?v=w2itwFJCgFQ

Grand scheme
The big picture

TF Kinematics
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Questions?
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