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Agenda

• Basic principles of aerodynamics
• How propellers work
• Drone design and flight principles
• Dynamic modeling
• Control
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What have we seen so far
Articulated robots
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Other types of robots
Next two lectures
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Quadrotor drones
What is a quadrotor?

Why four rotors?
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Aerodynamics
Thrust-Lift-Drag

Thrust, Lift and Drag are related to each other and to the design
of the airfoil
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Aerodynamics
Angle of attack

The ratio of lift to drag are also related to the ’angle of attack’
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Aerodynamics
Propellers

A propeller is many airfoils with different angles of attack

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control 8/33
8/33



Aerodynamics
Propellers

A propeller is many airfoils with different angles of attack

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control 8/33
8/33



Quadrotor
Systems of reference and degrees of freedom
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Quadrotor
Propeller forces and torques

Connecting with the aerodynamics of airfoils and propellers, each
rotors produces a lifting force (Fi) and a torque (τi).

Both of these have to do with the design of the propeller, and are
proportional to the square of the angular velocity of the propeller.

Fi = bω2
i

τi = dω2
i
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Quadrotor
Systems of reference and degrees of freedom

• x, y, z: translation along x, y, z axes
of the fixed frame

• φ, θ, ψ: rotation around x, y, z axes
of the fixed frame

These are known as euler rotations
(roll, pitch, yaw)

S = [ξ, η]T , where: ξ = [x, y, z]T and η = [φ, θ, ψ]T
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Kinematics modeling
Transformation

RB
E(η) =

cθcψ cψsθsφ − cφsψ sφsψ + cφcψsθ
cθcψ cφcψ + sθsφsψ cφsθsψ − cψsφ
−sθ cθsφ cθcφ



where:

cθ = cos(θ)
sψ = sin(ψ)

Direct geometric model
What is the difference compared to manipulators?
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Quadrotor
Achieving flight

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control 13/33
13/33



Quadrotor
Achieving flight in X configuration

• Translation on z:
ω1 = ω2 = ω3 = ω4

• Rotation around x:
ω1 = ω3, ω2 = ω4

• Rotation around y:
ω1 = ω2, ω3 = ω4

• Rotation around z:
ω1 = ω4, ω2 = ω3

• Translation on x: Rotation
around y

• Translation on y: Rotation
around x
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Quadrotor
Achieving flight in plus configuration

• Translation on z:
ω1 = ω2 = ω3 = ω4

• Rotation around x:
ω1 = ω3, ω2 6= ω4

• Rotation around y:
ω1 6= ω3, ω2 = ω4

• Rotation around z:
ω1 = ω3, ω2 = ω4

• Translation on x: Rotation
around y

• Translation on y: Rotation
around x
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Dynamic modeling
Transformation

RB
E(η) =

cθcψ cψsθsφ − cφsψ sφsψ + cφcψsθ
cθcψ cφcψ + sθsφsψ cφsθsψ − cψsφ
−sθ cθsφ cθcφ


Direct geometric model

What about inverse kinematics?
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Dynamic modeling
The Lagrangian

Remember:

• x, y, z: translation along x, y, z axes
of the fixed frame

• φ, θ, ψ: rotation around x, y, z axes
of the fixed frame

S = [ξ, η]T , where: ξ = [x, y, z]T and η = [φ, θ, ψ]T

Therefore:

L(S, Ṡ) = Klin +Krot − P = 1
2

(
mξ̇T ξ̇ + η̇T I(η)η̇

)
−mgz
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Dynamic modeling
The Lagrangian

L(S, Ṡ) = Klin +Krot − P = 1
2

(
mξ̇T ξ̇ + η̇T I(η)η̇

)
−mgz

Where I(η) is the moments of inertia expressed in the fixed
frame.

By differenciating, we can calculate the equation of motion of the
quadrotor

d

dt

∂L

∂Ṡ
− ∂L

∂S
=

[
Ftransl
Frot

]
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Dynamic modeling
The Lagrangian

Since the translation kinetic and potential energies depend only
on ξ and ξ̇ and the rotational kinetic energy only on η̇, we can
break this down to two decoupled systems of equations.

d

dt

∂ (Ktransl + P )
∂ξ̇

− ∂ (Ktransl + P )
∂ξ

= Ftransl

d

dt

∂Krot

∂η̇
− ∂Krot

∂η
= Frot
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Dynamic modeling
The Lagrangian

L(S, Ṡ) = 1
2

(
mξ̇T ξ̇ + η̇T I(η)η̇

)
−mgz

The first equation is easy to differenciate:

Ftransl = mξ̈ +

 0
0
mg



The second one is a bit more ’stiff’, due to the moments of
inertia:

Frot = I(η)η̈ + ˙I(η)η̇ − 1
2
d

dη

(
η̇T I(η)η̇

)
= I(η)η̈ + C(η, η̇)η̇
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Dynamic modeling
The forces

If we consider a hover flight, with very small changes in
orientation, we need to consider a vertical force to achieve this:

Ftransl =

 0
0

Ucoll



We need to express this force on the frame attached on the
drone, therefore:

Ftransl = RB
E

 0
0

Ucoll


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Dynamic modeling
The forces

If we do the multiplication between force and transformation
matrix, we get:cθcψ cψsθsφ − cφsψ sφsψ + cφcψsθ
cθcψ cφcψ + sθsφsψ cφsθsψ − cψsφ
−sθ cθsφ cθcφ


 0

0
Ucoll

 = mξ̈ +

 0
0
mg



ẍ =
[
sφsψ + cφcψsθ

]
Ucoll

m

ÿ =
[
cφsθsψ − cψsφ

]
Ucoll

m

z̈ = −g + cφcθ
Ucoll

m
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Dynamic modeling
The torques

Since we usually express rotations on the frame attached on the
drone, the rotational forces (torques), do not need to be
’transformed’ in the drones body frame. Therefore:

Frot =

UφUθ
Uψ



= I(η)η̈ + C(η, η̇)η̇

φ̈θ̈
ψ̈

 = I−1(η)


UφUθ
Uψ

 − C(η, η̇)η̇

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Dynamic modeling
Putting it all together

And all together:

ẍ =
[
cφsθcψ + sφsψ

]
Ucoll

m

ÿ =
[
cφsθsψ − sφcψ

]
Ucoll

m

z̈ = −g + cφcθ
Ucoll

mφ̈θ̈
ψ̈

 = I−1(η)


UφUθ
Uψ

 − C(η, η̇)η̇

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Dynamic modeling
Simplifications

Since we consider the hovering motion, this means that the
rotations are small and very slow, therefore we have:

cos(α) ≈ 1
sin(α) ≈ α
η̇ ≈ 0

The collective force, can be also expressed as Ucoll = mg+ ∆Ucoll
Therefore, our equations of motion become:

ẍ = θg
ÿ = −φg
z̈ = ∆Ucoll

m

φ̈ = 1
Ixx

Uφ

θ̈ = 1
Iyy

Uθ

ψ̈ = 1
Izz

Uψ
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ẍ = θg
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Dynamic modeling
What are the control inputs?

We need to consider again how does a drone achieve flight. For
the plus configuration:

Ucoll = F1 + F2 + F3 + F4

Uφ = l(F4 − F2)

Uθ = l(F1 − F3)

Uψ = τ1 + τ3 − τ2 − τ4

Remember:
Fi = bω2

i

τi = dω2
i
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Dynamic modeling
What are the control inputs?

For the cross configurations

Ucoll = F1 + F2 + F3 + F4

Uφ =
√

2
2 l(F1 + F3 − F2 − F4)

Uθ =
√

2
2 l(F1 + F2 − F3 − F4)

Uψ = τ2 + τ3 − τ1 − τ4

Is this useful?
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Quadrotor
Control

If we can derive the dynamic model of a quadrotor, why do you
think control is difficult?

• We made several assumptions to end up with a linear model
• We did not include motor dynamics
• We did not include aerodynamics
• When flying outdoors, there are huge disturbances (wind)
• A quadrotor is underactuated

For simple slow motions though, we can try to control it with
this simple model
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Quadrotor
Control

The model we have calculated is already linearized, so we can
apply state feedback control. Our states and inputs are:

x =
[
ξ, ξ̇

]T
u =

[
Ucoll, Uφ, Uθ, Uψ

]T
The model can be writen in state space as:

ẋ = Ax+Bu

Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robotic Systems Control 29/33
29/33



Quadrotor
State feedback

By calculating the matrices A and B, we can calculate a
feedback gain matrix K, that will stabilize the system. We do
that using standard pole positioning. Our system has 12 states
and 4 inputs, so the gain matrix will have dimensions 4 × 12:

u = −Kx

We then add an integrator to track a specific setpoint, in our
case a position in space:

u = −Kx+ uo

uo =
[
uz, uy, ux, 0

]T
where:

ux = kix
s

(rx − x) , uy = kiy
s

(
ry − y

)
, uz = kiz

s
(rz − z)
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Other types of robots
Next two lectures
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Further reading/watching

Very cool TED talk on drone modeling:
https://www.youtube.com/watch?v=w2itwFJCgFQ
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Questions?
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