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Agenda

• Types of wheels and wheeled robots
• Moving around
• Kinematics, modeling
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Why wheeled robots?

Why are wheeled robots useful?
Provide some examples of applications
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Wheels
Types of wheels

• Fixed wheel
• Centered wheel
• Off-centered wheel
• Omni wheel
• Mecanum wheel
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Wheels
Mecanum wheels
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Wheeled robots
Wheel configuration

Wheeled robots are categorized based on the type of wheels and configurations that
they use.

• By-wheel
• Tricycle
• Four wheel
• Omnidirectional
• etc. etc.
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Wheeled robots
Comparison to other types

Kinematics

Description of robot pose in a inertial frame

Pose
Position
Orientation
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Kinematics
Instantaneous center of rotation

Every motion can be modeled as a rotation around a point. For a circular motion, this
point is fixed, but for a more complex motion it is constantly moving.

Where is the ICR for straight motion?
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Wheeled robots
Differential drive

The differential drive is implemented:
• Two driving wheels
• Each can rotate independently
• Need for a third balancing point (usually a roller-ball)
• Sensitive to relative velocity of the two wheels
• No sliding!
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Differential drive
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Differential drive
Kinematics modeling

Definitions:

Ω: Angular velocity of the robot
U : Linear velocity of the robot
Ui: Linear velocity at wheel i
ωi: Angular velocity of wheel i
r: nominal radius of each wheel
R: Instantaneous Curvature Radius

How many degrees of freedom? Mobile robots are non-holonomic!
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Differential drive
Kinematics modeling

Pose of the robot

P =

x
y
θ


Control input

U =
[
U
Ω

]

If we want to follow a specific trajectory (i.e. a specific R), the wheels must move in
such rate so they rotate around the ICR with the same angular velocity
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Differential drive
Forward kinematics modeling

Ω = Ur

R + L
2

= Ul

R − L
2

R = L

2
Ur + Ul

Ur − Ul

U = ΩR

System of three equations with two

unknowns

We determine either UL and UR, or any
two from Ω, R, and U
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Differential drive
Forward kinematics modeling

We can observe:

U = Ur + Ul

2

Knowing that:

R = L

2
Ur + Ul

Ur − Ul
and:

u = ωr

Ω = Ur − Ul

L
= (ωr − ωl)r

L

U = (ωr + ωl)r
2

What happens when Ur = Ul OR Ur = −Ul?
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Differential drive
Forward kinematics modeling

Kinematics model in the robot frame

[
U
Ω

]
=


r

2
r

2
r

L

−r

L

 [
ωr

ωl

]
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Differential drive
Inverse kinematics modeling

How do we define the inverse kinematics?

Ur = Ω(R + L
2 ) = U(1 + L

2R)
Ul = Ω(R − L

2 ) = U(1 − L
2R)

Where:
ur = rωr

ul = rωl

Therefore:
ωr = Ω

R + L
2

r
= U

1 + L
2R

r

ωl = Ω
R − L

2
r

= U
1 − L

2R

r
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Differential drive
Kinematics modeling

Kinematics model in the world frame

ẋ
ẏ

θ̇

 =

cosθ 0
sinθ 0

0 1

 [
U
Ω

]

How do we calculate velocity in world
frame with respect to ωi?
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Tricycle
Description

A wheeled robot with three wheels:
• Two fixed wheels with the same axis
• The two wheels can move independently
• One wheel that steers and pushes the robot
• The third wheel is usually between the other two with an offset
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Tricycle
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Tricycle
Kinematics

We control the location of the ICR by changing the steering angle α, and the velocity,
by changing the wheel velocity ωw
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Tricycle
Forward kinematics model

If r is the steering wheel radius, then:

uw = ωwr
R = d ∗ tan(π

2 − α)

The angular velocity of the robot relative to
the base frame:

Ω = uw√
d2 + R2

Ω = uw

d
sin(α)
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Tricycle
Forward kinematics model

Kinematics model in the robot body frame:

U = uwcos(α)

Ω = uw

d
sin(α)
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Tricycle
Forward kinematics model

Kinematics model in the world body frame:

ẋ = uwcos(α) cos(θ)

ẏ = uwcos(α) sin(θ)

θ̇ = ω = uw

d
sin(α)

What about the inverse?
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Tricycle
Inverse kinematics model

α = atan( θ̇dsinθ

ẏ
)

uw = ẏ

cos(α)sin(θ)
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Four wheels
Description

Another type of wheeled robot, is with four wheels. The two front are transmitting the
power and are steered, while the back ones are fixed wheels
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Four wheels
Ackerman drive

For this to work, the steering of the two wheels must be coordinated:

α > β: when turning left
β > α: when turning right
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Four wheels
Ackerman drive

cot(α) =
R − L

2
d

cot(β) =
R + L

2
d

Therefore:
cot(β) − cot(α) = L

d

What happens when α = β = 0?

What is the relationship between angular velocities ωl and ωr?
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Four wheels
Ackerman and tricycle

We can describe the ackerman drive kinematics, the same way as for the tricycle, if we
consider a virtual fifth wheel between the two front ones
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Four wheels
Ackerman drive

We can easily calculate the equivalent virtual angle γ

cot(γ) = cot(α) + L

2d

cot(γ) = cot(β) − L

2d

The kinematics models then are the same
as for a tricycle with steering angle γ
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Four wheels
Skid steer drive

The skid steer drive consists of four individually driven wheels, all with a fixed direction

What is the issue with this design?
Two different ICR for the robot!
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Skid steer drive
Issues

Figure: From: Learning of skid-steered kinematic and dynamic models for motion planning,
Ordonez et. al.
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Skid steer drive
Modelling

We assume a differential drive model:[
U
Ω

]
=


r

2
r

2
r

L

−r

L

 [
ωr

ωl

]

We add one more dimension for lateral movement (slip, ul)
And we consider some disturbances on each direction

Uf

Ul

Ω

 =


r

2
r

2
0 0
r

L

−r

L


[
ωr

ωl

]
+

δuf

δul

δω



Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems 32/38
32/38



Skid steer drive
Modelling

We assume a differential drive model:[
U
Ω

]
=


r

2
r

2
r

L

−r

L

 [
ωr

ωl

]

We add one more dimension for lateral movement (slip, ul)

And we consider some disturbances on each direction

Uf

Ul

Ω

 =


r

2
r

2
0 0
r

L

−r

L


[
ωr

ωl

]
+

δuf

δul

δω



Tassos Natsakis tassos.natsakis@aut.utcluj.ro Robot Control Systems 32/38
32/38



Skid steer drive
Modelling

We assume a differential drive model:[
U
Ω

]
=


r

2
r

2
r

L

−r

L

 [
ωr

ωl

]

We add one more dimension for lateral movement (slip, ul)

And we consider some disturbances on each direction
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Skid steer drive
Modelling slipage

There are different ways to model these disturbances:

δuf = α11uc + α12ωc + α13ucωc

δul = α21uc + α22ωc + α23ucωc

δω = α31uc + α32ωc + α33ucωc

or:δuf

δul

δω

 = A

 uc

ωc

ucωc


What does the matrix A depend on?
How do we calculate it?
What do we do when we cannot rely on it?
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Inertial Measurement Unit
IMU

When we cannot rely on characterising matrix A, we
need external sensors for feedback.

IMUs provide information on acceleration, rotational
rate, and sometimes magnetic direction

Figure: Inertial Measurement Unit of
the apollo missions

Figure: Integrated IMU
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Basic control

◦ − C P
setpoint e action response

Let’s fill in the blanks

◦ −
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Dynamic modelling
Differential drive

Generalised coordinates?

Euler-Lagrange?

q =
[
X Y θ φl φr

]
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Dynamic modelling
Differential drive

L = T − V

T = Tlin + Tang

T = Trobot + Twl + T + wr
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Questions?
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